
dedupe Documentation
Release 1.9.9

Forest Gregg, Derek Eder, and contributors

Mar 09, 2020





CONTENTS

1 Important links 3

2 Tools built with dedupe 5

3 Contents 7

4 Features 41

5 Installation 43

6 Using dedupe 45

7 Errors / Bugs 47

8 Contributing to dedupe 49

9 Citing dedupe 51

10 Indices and tables 53

Index 55

i



ii



dedupe Documentation, Release 1.9.9

dedupe is a library that uses machine learning to perform de-duplication and entity resolution quickly on structured
data.

If you’re looking for the documentation for the Dedupe.io Web API, you can find that here: https://apidocs.dedupe.io/

dedupe will help you:

• remove duplicate entries from a spreadsheet of names and addresses

• link a list with customer information to another with order history, even without unique customer id’s

• take a database of campaign contributions and figure out which ones were made by the same person, even if
the names were entered slightly differently for each record

dedupe takes in human training data and comes up with the best rules for your dataset to quickly and automatically
find similar records, even with very large databases.
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ONE

IMPORTANT LINKS

• Documentation: https://docs.dedupe.io/

• Repository: https://github.com/dedupeio/dedupe

• Issues: https://github.com/dedupeio/dedupe/issues

• Mailing list: https://groups.google.com/forum/#!forum/open-source-deduplication

• Examples: https://github.com/dedupeio/dedupe-examples

• IRC channel, #dedupe on irc.freenode.net
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CHAPTER

TWO

TOOLS BUILT WITH DEDUPE

Dedupe.io A full service web service powered by dedupe for de-duplicating and find matches in your messy data.
It provides an easy-to-use interface and provides cluster review and automation, as well as advanced record linkage,
continuous matching and API integrations. See the product page and the launch blog post.

csvdedupe Command line tool for de-duplicating and linking CSV files. Read about it on Source Knight-Mozilla
OpenNews.
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THREE

CONTENTS

3.1 Library Documentation

3.1.1 Dedupe Objects

class dedupe.Dedupe(variable_definition, num_cores=None, **kwargs)
Class for active learning deduplication. Use deduplication when you have data that can contain multiple records
that can all refer to the same entity.

Parameters

• variable_definition (Sequence[Mapping]) – A list of dictionaries describing
the variables will be used for training a model. See Variable Definitions

• num_cores (Optional[int]) – the number of cpus to use for parallel processing. If set
to None, uses all cpus available on the machine. If set to 0, then multiprocessing will be
disabled.

Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods

# initialize from a defined set of fields
variables = [{'field' : 'Site name', 'type': 'String'},

{'field' : 'Address', 'type': 'String'},
{'field' : 'Zip', 'type': 'String', 'has missing':True},
{'field' : 'Phone', 'type': 'String', 'has missing':True}
]

deduper = dedupe.Dedupe(variables)

prepare_training(data, training_file=None, sample_size=1500, blocked_proportion=0.9, origi-
nal_length=None)

Initialize the active learner with your data and, optionally, existing training data.

Sets up the learner.

Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records,
where the keys are record_ids and the values are dictionaries with the keys being field
names

7
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• training_file (Optional[TextIO]) – file object containing training data

• sample_size (int) – Size of the sample to draw

• blocked_proportion (float) – The proportion of record pairs to be sampled from
similar records, as opposed to randomly selected pairs. Defaults to 0.9.

• original_length (Optional[int]) – If data is a subsample of all your
data, original_length should be the size of your complete data. By default,
original_length defaults to the length of data.

matcher.prepare_training(data_d, 150000, .5)

# or
with open('training_file.json') as f:

matcher.prepare_training(data_d, training_file=f)

uncertain_pairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most
curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

> pair = matcher.uncertain_pairs()
> print(pair)
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

mark_pairs(labeled_pairs)
Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training
data from an existing source.

Parameters labeled_pairs (TrainingData) – A dictionary with two keys, match and
distinct the values are lists that can contain pairs of records

labeled_examples = {'match' : [],
'distinct' : [({'name' : 'Georgie Porgie'},

{'name' : 'Georgette Porgette'})]
}

matcher.mark_pairs(labeled_examples)

train(recall=0.95, index_predicates=True)
Learn final pairwise classifier and fingerprinting rules. Requires that adequate training data has been
already been provided.

Parameters

• recall (float) – The proportion of true dupe pairs in our training data that that the
learned fingerprinting rules must cover. If we lower the recall, there will be pairs of true
dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0.

• index_predicates (bool) – Should dedupe consider predicates that rely upon in-
dexing the data. Index predicates can be slower and take substantial memory.

write_training(file_obj)
Write a JSON file that contains labeled examples

Parameters file_obj (TextIO) – file object to write training data to
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with open('training.json', 'w') as f:
matcher.write_training(f)

write_settings(file_obj)
Write a settings file containing the data model and predicates to a file object

Parameters file_obj (BinaryIO) – file object to write settings data into

with open('learned_settings', 'wb') as f:
matcher.write_settings(f)

cleanup_training()
Clean up data we used for training. Free up memory.

partition(data, threshold=0.5)
Identifies records that all refer to the same entity, returns tuples containing a sequence of record ids and
corresponding sequence of confidence score as a float between 0 and 1. The record_ids within each set
should refer to the same entity and the confidence score is a measure of our confidence a particular entity
belongs in the cluster.

This method should only used for small to moderately sized datasets for larger data, you need may need to
generate your own pairs of records and feed them to score().

Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records,
where the keys are record_ids and the values are dictionaries with the keys being field
names

• threshold (float) – Number between 0 and 1 (Default is 0.5). We will only consider
put together records into clusters if the cophenetic similarity of the cluster is greater than
the threshold.

Lowering the number will increase recall, raising it will increase precision

> clusters = matcher.partition(data, threshold=0.5)
> print(duplicates)
[((1, 2, 3), (0.790, 0.860, 0.790)),
((4, 5), (0.720, 0.720)),
((10, 11), (0.899, 0.899))]

3.1.2 StaticDedupe Objects

class dedupe.StaticDedupe(settings_file, num_cores=None, **kwargs)
Class for deduplication using saved settings. If you have already trained a Dedupe object and saved the settings,
you can load the saved settings with StaticDedupe.

Parameters

• settings_file (BinaryIO) – A file object containing settings info produced from the
write_settings() method.

• num_cores (Optional[int]) – the number of cpus to use for parallel processing, de-
faults to the number of cpus available on the machine. If set to 0, then multiprocessing will
be disabled.

3.1. Library Documentation 9
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Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods

with open('learned_settings', 'rb') as f:
matcher = StaticDedupe(f)

partition(data, threshold=0.5)
Identifies records that all refer to the same entity, returns tuples containing a sequence of record ids and
corresponding sequence of confidence score as a float between 0 and 1. The record_ids within each set
should refer to the same entity and the confidence score is a measure of our confidence a particular entity
belongs in the cluster.

This method should only used for small to moderately sized datasets for larger data, you need may need to
generate your own pairs of records and feed them to score().

Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records,
where the keys are record_ids and the values are dictionaries with the keys being field
names

• threshold (float) – Number between 0 and 1 (Default is 0.5). We will only consider
put together records into clusters if the cophenetic similarity of the cluster is greater than
the threshold.

Lowering the number will increase recall, raising it will increase precision

> clusters = matcher.partition(data, threshold=0.5)
> print(duplicates)
[((1, 2, 3), (0.790, 0.860, 0.790)),
((4, 5), (0.720, 0.720)),
((10, 11), (0.899, 0.899))]

3.1.3 RecordLink Objects

class dedupe.RecordLink(variable_definition, num_cores=None, **kwargs)
Class for active learning record linkage.

Use RecordLinkMatching when you have two datasets that you want to join.

Parameters

• variable_definition (Sequence[Mapping]) – A list of dictionaries describing
the variables will be used for training a model. See Variable Definitions

• num_cores (Optional[int]) – the number of cpus to use for parallel processing. If set
to None, uses all cpus available on the machine. If set to 0, then multiprocessing will be
disabled.

Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods
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# initialize from a defined set of fields
variables = [{'field' : 'Site name', 'type': 'String'},

{'field' : 'Address', 'type': 'String'},
{'field' : 'Zip', 'type': 'String', 'has missing':True},
{'field' : 'Phone', 'type': 'String', 'has missing':True}
]

deduper = dedupe.RecordLink(variables)

prepare_training(data_1, data_2, training_file=None, sample_size=15000,
blocked_proportion=0.5, original_length_1=None, original_length_2=None)

Initialize the active learner with your data and, optionally, existing training data.

Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the
keys being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

• training_file (Optional[TextIO]) – file object containing training data

• sample_size (int) – The size of the sample to draw. Defaults to 150,000

• blocked_proportion (float) – The proportion of record pairs to be sampled from
similar records, as opposed to randomly selected pairs. Defaults to 0.5.

• original_length_1 (Optional[int]) – If data_1 is a subsample of your first
dataset, original_length_1 should be the size of the complete first dataset. By
default, original_length_1 defaults to the length of data_1

• original_length_2 (Optional[int]) – If data_2 is a subsample of your first
dataset, original_length_2 should be the size of the complete first dataset. By
default, original_length_2 defaults to the length of data_2

matcher.prepare_training(data_1, data_2, 150000)

with open('training_file.json') as f:
matcher.prepare_training(data_1, data_2, training_file=f)

uncertain_pairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most
curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

> pair = matcher.uncertain_pairs()
> print(pair)
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

mark_pairs(labeled_pairs)
Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training
data from an existing source.

Parameters labeled_pairs (TrainingData) – A dictionary with two keys, match and
distinct the values are lists that can contain pairs of records

3.1. Library Documentation 11
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labeled_examples = {'match' : [],
'distinct' : [({'name' : 'Georgie Porgie'},

{'name' : 'Georgette Porgette'})]
}

matcher.mark_pairs(labeled_examples)

train(recall=0.95, index_predicates=True)
Learn final pairwise classifier and fingerprinting rules. Requires that adequate training data has been
already been provided.

Parameters

• recall (float) – The proportion of true dupe pairs in our training data that that the
learned fingerprinting rules must cover. If we lower the recall, there will be pairs of true
dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0.

• index_predicates (bool) – Should dedupe consider predicates that rely upon in-
dexing the data. Index predicates can be slower and take substantial memory.

write_training(file_obj)
Write a JSON file that contains labeled examples

Parameters file_obj (TextIO) – file object to write training data to

with open('training.json', 'w') as f:
matcher.write_training(f)

write_settings(file_obj)
Write a settings file containing the data model and predicates to a file object

Parameters file_obj (BinaryIO) – file object to write settings data into

with open('learned_settings', 'wb') as f:
matcher.write_settings(f)

cleanup_training()
Clean up data we used for training. Free up memory.

join(data_1, data_2, threshold=0.5, constraint='one-to-one')
Identifies pairs of records that refer to the same entity.

Returns pairs of record ids with a confidence score as a float between 0 and 1. The record_ids within the
pair should refer to the same entity and the confidence score is the estimated probability that the records
refer to the same entity.

This method should only used for small to moderately sized datasets for larger data, you need may need to
generate your own pairs of records and feed them to the score().

Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the
keys being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

• threshold (float) – Number between 0 and 1 (default is .5). We will consider records
as potential duplicates if the predicted probability of being a duplicate is above the thresh-
old.
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Lowering the number will increase recall, raising it will increase precision

• constraint (Literal[‘one-to-one’, ‘many-to-one’, ‘many-to-many’]) – What type
of constraint to put on a join.

’one-to-one’ Every record in data_1 can match at most one record from data_2 and every
record from data_2 can match at most one record from data_1. This is good for when
both data_1 and data_2 are from different sources and you are interested in matching
across the sources. If, individually, data_1 or data_2 have many duplicates you will not
get good matches.

’many-to-one’ Every record in data_1 can match at most one record from data_2, but
more than one record from data_1 can match to the same record in data_2. This is good
for when data_2 is a lookup table and data_1 is messy, such as geocoding or matching
against golden records.

’many-to-many’ Every record in data_1 can match multiple records in data_2 and vice
versa. This is like a SQL inner join.

> links = matcher.join(data_1, data_2, threshold=0.5)
> print(list(links))
[((1, 2), 0.790),
((4, 5), 0.720),
((10, 11), 0.899)]

3.1.4 StaticRecordLink Objects

class dedupe.StaticRecordLink(settings_file, num_cores=None, **kwargs)
Class for record linkage using saved settings. If you have already trained a RecordLink instance, you can load
the saved settings with StaticRecordLink.

Parameters

• settings_file (BinaryIO) – A file object containing settings info produced from the
write_settings() method.

• num_cores (Optional[int]) – the number of cpus to use for parallel processing, de-
faults to the number of cpus available on the machine. If set to 0, then multiprocessing will
be disabled.

Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods

with open('learned_settings', 'rb') as f:
matcher = StaticRecordLink(f)

join(data_1, data_2, threshold=0.5, constraint='one-to-one')
Identifies pairs of records that refer to the same entity.

Returns pairs of record ids with a confidence score as a float between 0 and 1. The record_ids within the
pair should refer to the same entity and the confidence score is the estimated probability that the records
refer to the same entity.

This method should only used for small to moderately sized datasets for larger data, you need may need to
generate your own pairs of records and feed them to the score().

3.1. Library Documentation 13
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Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the
keys being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

• threshold (float) – Number between 0 and 1 (default is .5). We will consider records
as potential duplicates if the predicted probability of being a duplicate is above the thresh-
old.

Lowering the number will increase recall, raising it will increase precision

• constraint (Literal[‘one-to-one’, ‘many-to-one’, ‘many-to-many’]) – What type
of constraint to put on a join.

’one-to-one’ Every record in data_1 can match at most one record from data_2 and every
record from data_2 can match at most one record from data_1. This is good for when
both data_1 and data_2 are from different sources and you are interested in matching
across the sources. If, individually, data_1 or data_2 have many duplicates you will not
get good matches.

’many-to-one’ Every record in data_1 can match at most one record from data_2, but
more than one record from data_1 can match to the same record in data_2. This is good
for when data_2 is a lookup table and data_1 is messy, such as geocoding or matching
against golden records.

’many-to-many’ Every record in data_1 can match multiple records in data_2 and vice
versa. This is like a SQL inner join.

> links = matcher.join(data_1, data_2, threshold=0.5)
> print(list(links))
[((1, 2), 0.790),
((4, 5), 0.720),
((10, 11), 0.899)]

3.1.5 Gazetteer Objects

class dedupe.Gazetteer(variable_definition, num_cores=None, **kwargs)
Class for active learning gazetteer matching.

Gazetteer matching is for matching a messy data set against a ‘canonical dataset’. This class is useful for such
tasks as matching messy addresses against a clean list

Parameters

• variable_definition (Sequence[Mapping]) – A list of dictionaries describing
the variables will be used for training a model. See Variable Definitions

• num_cores (Optional[int]) – the number of cpus to use for parallel processing. If set
to None, uses all cpus available on the machine. If set to 0, then multiprocessing will be
disabled.

Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods
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# initialize from a defined set of fields
variables = [{'field' : 'Site name', 'type': 'String'},

{'field' : 'Address', 'type': 'String'},
{'field' : 'Zip', 'type': 'String', 'has missing':True},
{'field' : 'Phone', 'type': 'String', 'has missing':True}
]

matcher = dedupe.Gazetteer(variables)

prepare_training(data_1, data_2, training_file=None, sample_size=15000,
blocked_proportion=0.5, original_length_1=None, original_length_2=None)

Initialize the active learner with your data and, optionally, existing training data.

Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the
keys being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

• training_file (Optional[TextIO]) – file object containing training data

• sample_size (int) – The size of the sample to draw. Defaults to 150,000

• blocked_proportion (float) – The proportion of record pairs to be sampled from
similar records, as opposed to randomly selected pairs. Defaults to 0.5.

• original_length_1 (Optional[int]) – If data_1 is a subsample of your first
dataset, original_length_1 should be the size of the complete first dataset. By
default, original_length_1 defaults to the length of data_1

• original_length_2 (Optional[int]) – If data_2 is a subsample of your first
dataset, original_length_2 should be the size of the complete first dataset. By
default, original_length_2 defaults to the length of data_2

matcher.prepare_training(data_1, data_2, 150000)

with open('training_file.json') as f:
matcher.prepare_training(data_1, data_2, training_file=f)

uncertain_pairs()

Returns a list of pairs of records from the sample of record pairs tuples that Dedupe is most
curious to have labeled.

This method is mainly useful for building a user interface for training a matching model.

> pair = matcher.uncertain_pairs()
> print(pair)
[({'name' : 'Georgie Porgie'}, {'name' : 'Georgette Porgette'})]

mark_pairs(labeled_pairs)
Add users labeled pairs of records to training data and update the matching model

This method is useful for building a user interface for training a matching model or for adding training
data from an existing source.

Parameters labeled_pairs (TrainingData) – A dictionary with two keys, match and
distinct the values are lists that can contain pairs of records

3.1. Library Documentation 15
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labeled_examples = {'match' : [],
'distinct' : [({'name' : 'Georgie Porgie'},

{'name' : 'Georgette Porgette'})]
}

matcher.mark_pairs(labeled_examples)

train(recall=0.95, index_predicates=True)
Learn final pairwise classifier and fingerprinting rules. Requires that adequate training data has been
already been provided.

Parameters

• recall (float) – The proportion of true dupe pairs in our training data that that the
learned fingerprinting rules must cover. If we lower the recall, there will be pairs of true
dupes that we will never directly compare.

recall should be a float between 0.0 and 1.0.

• index_predicates (bool) – Should dedupe consider predicates that rely upon in-
dexing the data. Index predicates can be slower and take substantial memory.

write_training(file_obj)
Write a JSON file that contains labeled examples

Parameters file_obj (TextIO) – file object to write training data to

with open('training.json', 'w') as f:
matcher.write_training(f)

write_settings(file_obj)
Write a settings file containing the data model and predicates to a file object

Parameters file_obj (BinaryIO) – file object to write settings data into

with open('learned_settings', 'wb') as f:
matcher.write_settings(f)

cleanup_training()
Clean up data we used for training. Free up memory.

index(data)
Add records to the index of records to match against. If a record in canonical_data has the same key
as a previously indexed record, the old record will be replaced.

Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of
records where the keys are record_ids and the values are dictionaries with the keys being
field_names

unindex(data)
Remove records from the index of records to match against.

Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of
records where the keys are record_ids and the values are dictionaries with the keys being
field_names

search(data, threshold=0.0, n_matches=1, generator=False)
Identifies pairs of records that could refer to the same entity, returns tuples containing tuples of possible
matches, with a confidence score for each match. The record_ids within each tuple should refer to potential
matches from a messy data record to canonical records. The confidence score is the estimated probability
that the records refer to the same entity.
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Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of records
from a messy dataset, where the keys are record_ids and the values are dictionaries with
the keys being field names.

• threshold (float) – a number between 0 and 1 (default is 0.5). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) – the maximum number of possible matches from canonical_data to
return for each record in data. If set to None all possible matches above the threshold will
be returned. Defaults to 1

• generator (bool) – when True, match will generate a sequence of possible matches,
instead of a list. Defaults to False This makes match a lazy method.

> matches = gazetteer.search(data, threshold=0.5, n_matches=2)
> print(matches)
[(((1, 6), 0.72),
((1, 8), 0.6)),

(((2, 7), 0.72),),
(((3, 6), 0.72),
((3, 8), 0.65)),

(((4, 6), 0.96),
((4, 5), 0.63))]

3.1.6 StaticGazetteer Objects

class dedupe.StaticGazetteer(settings_file, num_cores=None, **kwargs)
Class for gazetter matching using saved settings.

If you have already trained a Gazetteer instance, you can load the saved settings with StaticGazetteer.

Parameters

• settings_file (BinaryIO) – A file object containing settings info produced from the
write_settings() method.

• num_cores (Optional[int]) – the number of cpus to use for parallel processing, de-
faults to the number of cpus available on the machine. If set to 0, then multiprocessing will
be disabled.

Warning: If using multiprocessing on Windows or Mac OS X, then you must protect calls to the Dedupe
methods with a if __name__ == '__main__' in your main module, see https://docs.python.org/3/
library/multiprocessing.html#the-spawn-and-forkserver-start-methods

with open('learned_settings', 'rb') as f:
matcher = StaticGazetteer(f)

index(data)
Add records to the index of records to match against. If a record in canonical_data has the same key
as a previously indexed record, the old record will be replaced.
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Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of
records where the keys are record_ids and the values are dictionaries with the keys being
field_names

unindex(data)
Remove records from the index of records to match against.

Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of
records where the keys are record_ids and the values are dictionaries with the keys being
field_names

search(data, threshold=0.0, n_matches=1, generator=False)
Identifies pairs of records that could refer to the same entity, returns tuples containing tuples of possible
matches, with a confidence score for each match. The record_ids within each tuple should refer to potential
matches from a messy data record to canonical records. The confidence score is the estimated probability
that the records refer to the same entity.

Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – a dictionary of records
from a messy dataset, where the keys are record_ids and the values are dictionaries with
the keys being field names.

• threshold (float) – a number between 0 and 1 (default is 0.5). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) – the maximum number of possible matches from canonical_data to
return for each record in data. If set to None all possible matches above the threshold will
be returned. Defaults to 1

• generator (bool) – when True, match will generate a sequence of possible matches,
instead of a list. Defaults to False This makes match a lazy method.

> matches = gazetteer.search(data, threshold=0.5, n_matches=2)
> print(matches)
[(((1, 6), 0.72),
((1, 8), 0.6)),

(((2, 7), 0.72),),
(((3, 6), 0.72),
((3, 8), 0.65)),

(((4, 6), 0.96),
((4, 5), 0.63))]

blocks(data)
Yield groups of pairs of records that share fingerprints.

Each group contains one record from data_1 paired with the records from the indexed records that data_1
shares a fingerprint with.

Each pair within and among blocks will occur at most once. If you override this method, you need to take
care to ensure that this remains true, as downstream methods, particularly many_to_n(), assumes that
every pair of records is compared no more than once.

Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of
records, where the keys are record_ids and the values are dictionaries with the keys being
field names
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> pairs = matcher.pairs(data)
> print(list(pairs))
[[((1, {'name' : 'Pat', 'address' : '123 Main'}),

(8, {'name' : 'Pat', 'address' : '123 Main'})),
((1, {'name' : 'Pat', 'address' : '123 Main'}),
(9, {'name' : 'Sam', 'address' : '123 Main'}))

],
[((2, {'name' : 'Sam', 'address' : '2600 State'}),

(5, {'name' : 'Pam', 'address' : '2600 Stat'})),
((2, {'name' : 'Sam', 'address' : '123 State'}),
(7, {'name' : 'Sammy', 'address' : '123 Main'}))

]]

score(blocks)
Scores groups of pairs of records. Yields structured numpy arrays representing pairs of records in the
group and the associated probability that the pair is a match.

Parameters blocks (Iterator[List[Tuple[Tuple[Union[int, str],
Mapping[str, Any]], Tuple[Union[int, str], Mapping[str, Any]]]]]) – It-
erator of blocks of records

many_to_n(score_blocks, threshold=0.0, n_matches=1)
For each group of scored pairs, yield the highest scoring N pairs

Parameters

• score_blocks (Iterable[ndarray]) – Iterator of numpy structured arrays, each
with a dtype of [('pairs', id_type, 2), ('score', 'f4')] where dtype
is either a str or int, and score is a number between 0 and 1. The ‘pairs’ column contains
pairs of ids of the records compared and the ‘score’ column should contains the similarity
score for that pair of records.

• threshold (float) – Number between 0 and 1 (default is 0.0). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) – How many top scoring pairs to select per group

3.1.7 Lower Level Classes and Methods

With the methods documented above, you can work with data into the millions of records. However, if are working
with larger data you may not be able to load all your data into memory. You’ll need to interact with some of the lower
level classes and methods.

See also:

The PostgreSQL and MySQL examples use these lower level classes and methods.
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Dedupe and StaticDedupe

class dedupe.Dedupe

fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.

pairs(data)
Yield pairs of records that share common fingerprints.

Each pair will occur at most once. If you override this method, you need to take care to ensure that this
remains true, as downstream methods, particularly cluster(), assumes that every pair of records is
compared no more than once.

Parameters data – Dictionary of records, where the keys are record_ids and the values are
dictionaries with the keys being field names

> pairs = matcher.pairs(data)
> print(list(pairs))
[((1, {'name' : 'Pat', 'address' : '123 Main'}),
(2, {'name' : 'Pat', 'address' : '123 Main'})),

((1, {'name' : 'Pat', 'address' : '123 Main'}),
(3, {'name' : 'Sam', 'address' : '123 Main'}))

]

score(pairs)
Scores pairs of records. Returns pairs of tuples of records id and associated probabilites that the pair of
records are match

Parameters pairs (Iterator[Tuple[Tuple[Union[int, str], Mapping[str, Any]],
Tuple[Union[int, str], Mapping[str, Any]]]]) – Iterator of pairs of records

cluster(scores, threshold=0.5)
From the similarity scores of pairs of records, decide which groups of records are all referring to the same
entity.

Yields tuples containing a sequence of record ids and corresponding sequence of confidence score as a
float between 0 and 1. The record_ids within each set should refer to the same entity and the confidence
score is a measure of our confidence a particular entity belongs in the cluster.

Parameters

• scores (ndarray) – a numpy structured array with a dtype of [('pairs',
id_type, 2), ('score', 'f4')] where dtype is either a str or int, and score
is a number between 0 and 1. The ‘pairs’ column contains pairs of ids of the records com-
pared and the ‘score’ column should contains the similarity score for that pair of records.

For each pair, the smaller id should be first.

• threshold (float) – Number between 0 and 1. We will only consider put together
records into clusters if the cophenetic similarity of the cluster is greater than the threshold.

Lowering the number will increase recall, raising it will increase precision

Defaults to 0.5.

> pairs = matcher.pairs(data)
> scores = matcher.scores(pairs)
> clusters = matcher.cluster(scores)
> print(list(clusters))

(continues on next page)
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(continued from previous page)

[((1, 2, 3), (0.790, 0.860, 0.790)),
((4, 5), (0.720, 0.720)),
((10, 11), (0.899, 0.899))]

class dedupe.StaticDedupe

fingerprinter
Instance of dedupe.blocking.Fingerprinter class

pairs(data)
Same as dedupe.Dedupe.pairs()

score(pairs)
Same as dedupe.Dedupe.score()

cluster(matches, threshold=0.5)
Same as dedupe.Dedupe.cluster()

RecordLink and StaticRecordLink

class dedupe.RecordLink

fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.

pairs(data_1, data_2)
Yield pairs of records that share common fingerprints.

Each pair will occur at most once. If you override this method, you need to take care to ensure that this
remains true, as downstream methods, particularly one_to_one(), and many_to_one() assumes
that every pair of records is compared no more than once.

Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the
keys being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

> pairs = matcher.pairs(data_1, data_2)
> print(list(pairs))
[((1, {'name' : 'Pat', 'address' : '123 Main'}),
(2, {'name' : 'Pat', 'address' : '123 Main'})),

((1, {'name' : 'Pat', 'address' : '123 Main'}),
(3, {'name' : 'Sam', 'address' : '123 Main'}))

]

score(pairs)
Scores pairs of records. Returns pairs of tuples of records id and associated probabilites that the pair of
records are match

Parameters pairs (Iterator[Tuple[Tuple[Union[int, str], Mapping[str, Any]],
Tuple[Union[int, str], Mapping[str, Any]]]]) – Iterator of pairs of records
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one_to_one(scores, threshold=0.0)
From the similarity scores of pairs of records, decide which pairs refer to the same entity.

Every record in data_1 can match at most one record from data_2 and every record from data_2 can match
at most one record from data_1. See https://en.wikipedia.org/wiki/Injective_function.

This method is good for when both data_1 and data_2 are from different sources and you are interested in
matching across the sources. If, individually, data_1 or data_2 have many duplicates you will not get good
matches.

Yields pairs of record ids with a confidence score as a float between 0 and 1. The record_ids within the
pair should refer to the same entity and the confidence score is the estimated probability that the records
refer to the same entity.

Parameters

• scores (ndarray) – a numpy structured array with a dtype of [('pairs',
id_type, 2), ('score', 'f4')] where dtype is either a str or int, and score
is a number between 0 and 1. The ‘pairs’ column contains pairs of ids of the records com-
pared and the ‘score’ column should contains the similarity score for that pair of records.

• threshold (float) – Number between 0 and 1 (default is 0.0). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision

> pairs = matcher.pairs(data)
> scores = matcher.scores(pairs, threshold=0.5)
> links = matcher.one_to_one(scores)
> print(list(links))
[((1, 2), 0.790),
((4, 5), 0.720),
((10, 11), 0.899)]

many_to_one(scores, threshold=0.0)
From the similarity scores of pairs of records, decide which pairs refer to the same entity.

Every record in data_1 can match at most one record from data_2, but more than one record from data_1
can match to the same record in data_2. See https://en.wikipedia.org/wiki/Surjective_function

This method is good for when data_2 is a lookup table and data_1 is messy, such as geocoding or matching
against golden records.

Yields pairs of record ids with a confidence score as a float between 0 and 1. The record_ids within the
pair should refer to the same entity and the confidence score is the estimated probability that the records
refer to the same entity.

Parameters

• scores (ndarray) – a numpy structured array with a dtype of [('pairs',
id_type, 2), ('score', 'f4')] where dtype is either a str or int, and score
is a number between 0 and 1. The ‘pairs’ column contains pairs of ids of the records com-
pared and the ‘score’ column should contains the similarity score for that pair of records.

• threshold (float) – Number between 0 and 1 (default is 0.0). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision
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> pairs = matcher.pairs(data)
> scores = matcher.scores(pairs, threshold=0.5)
> links = matcher.many_to_one(scores)
> print(list(links))
[((1, 2), 0.790),
((4, 5), 0.720),
((7, 2), 0.623),
((10, 11), 0.899)]

class dedupe.StaticRecordLink

fingerprinter
Instance of dedupe.blocking.Fingerprinter class

pairs(data_1, data_2)
Same as dedupe.RecordLink.pairs()

score(pairs)
Same as dedupe.RecordLink.score()

one_to_one(scores, threshold=0.0)
Same as dedupe.RecordLink.one_to_one()

many_to_one(scores, threshold=0.0)
Same as dedupe.RecordLink.many_to_one()

Gazetteer and StaticGazetteer

class dedupe.Gazetteer

fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.

blocks(data)
Yield groups of pairs of records that share fingerprints.

Each group contains one record from data_1 paired with the records from the indexed records that data_1
shares a fingerprint with.

Each pair within and among blocks will occur at most once. If you override this method, you need to take
care to ensure that this remains true, as downstream methods, particularly many_to_n(), assumes that
every pair of records is compared no more than once.

Parameters data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of
records, where the keys are record_ids and the values are dictionaries with the keys being
field names

> pairs = matcher.pairs(data)
> print(list(pairs))
[[((1, {'name' : 'Pat', 'address' : '123 Main'}),

(8, {'name' : 'Pat', 'address' : '123 Main'})),
((1, {'name' : 'Pat', 'address' : '123 Main'}),
(9, {'name' : 'Sam', 'address' : '123 Main'}))

],
[((2, {'name' : 'Sam', 'address' : '2600 State'}),

(5, {'name' : 'Pam', 'address' : '2600 Stat'})),
((2, {'name' : 'Sam', 'address' : '123 State'}),

(continues on next page)
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(continued from previous page)

(7, {'name' : 'Sammy', 'address' : '123 Main'}))
]]

score(blocks)
Scores groups of pairs of records. Yields structured numpy arrays representing pairs of records in the
group and the associated probability that the pair is a match.

Parameters blocks (Iterator[List[Tuple[Tuple[Union[int, str],
Mapping[str, Any]], Tuple[Union[int, str], Mapping[str, Any]]]]]) – It-
erator of blocks of records

many_to_n(score_blocks, threshold=0.0, n_matches=1)
For each group of scored pairs, yield the highest scoring N pairs

Parameters

• score_blocks (Iterable[ndarray]) – Iterator of numpy structured arrays, each
with a dtype of [('pairs', id_type, 2), ('score', 'f4')] where dtype
is either a str or int, and score is a number between 0 and 1. The ‘pairs’ column contains
pairs of ids of the records compared and the ‘score’ column should contains the similarity
score for that pair of records.

• threshold (float) – Number between 0 and 1 (default is 0.0). We will consider
records as potential duplicates if the predicted probability of being a duplicate is above the
threshold.

Lowering the number will increase recall, raising it will increase precision

• n_matches (int) – How many top scoring pairs to select per group

class dedupe.StaticGazeteer

fingerprinter
Instance of dedupe.blocking.Fingerprinter class

blocks(data)
Same as dedupe.Gazetteer.blocks()

score(blocks)
Same as dedupe.Gazetteer.score()

many_to_n(score_blocks, threshold=0.0, n_matches=1)
Same as dedupe.Gazetteer.many_to_n()

Fingerprinter Objects

class dedupe.blocking.Fingerprinter(predicates)
Takes in a record and returns all blocks that record belongs to

__call__(records, target=False)
Generate the predicates for records. Yields tuples of (predicate, record_id).

Parameters

• records (Iterable[Tuple[Union[int, str], Mapping[str, Any]]]) – A se-
quence of tuples of (record_id, record_dict). Can often be created by data_dict.
items().
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• target (bool) – Indicates whether the data should be treated as the target data. This
effects the behavior of search predicates. If target is set to True, an search predicate
will return the value itself. If target is set to False the search predicate will return all
possible values within the specified search distance.

Let’s say we have a LevenshteinSearchPredicate with an associated distance
of 1 on a "name" field; and we have a record like {"name": "thomas"}. If the
target is set to True then the predicate will return "thomas". If target is set to
False, then the blocker could return "thomas", "tomas", and "thoms". By using
the target argument on one of your datasets, you will dramatically reduce the total
number of comparisons without a loss of accuracy.

> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper.fingerprinter(data)
> print list(blocked_ids)
[('foo:1', 1), ..., ('bar:1', 100)]

index_fields
A dictionary of all the fingerprinter methods that use an index of data field values. The keys are the field
names, which can be useful to know for indexing the data.

index(docs, field)
Add docs to the indices used by fingerprinters.

Some fingerprinter methods depend upon having an index of values that a field may have in the data. This
method adds those values to the index. If you don’t have any fingerprinter methods that use an index, this
method will do nothing.

Parameters

• docs (Union[Iterable[str], Iterable[Iterable[str]]]) – an iterator of val-
ues from your data to index. While not required, it is recommended that docs be a unique
set of of those values. Indexing can be an expensive operation.

• field (str) – fieldname or key associated with the values you are indexing

unindex(docs, field)
Remove docs from indices used by fingerprinters

Parameters

• docs (Union[Iterable[str], Iterable[Iterable[str]]]) – an iterator of val-
ues from your data to remove. While not required, it is recommended that docs be a unique
set of of those values. Indexing can be an expensive operation.

• field (str) – fieldname or key associated with the values you are unindexing

reset_indices()
Fingeprinter indicdes can take up a lot of memory. If you are done with blocking, the method will reset
the indices to free up. If you need to block again, the data will need to be re-indexed.
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3.1.8 Convenience Functions

dedupe.console_label(deduper)
Train a matcher instance (Dedupe, RecordLink, or Gazetteer) from the command line. Example

> deduper = dedupe.Dedupe(variables)
> deduper.prepare_training(data)
> dedupe.console_label(deduper)

dedupe.training_data_dedupe(data, common_key, training_size=50000)
Construct training data for consumption by the func:mark_pairs method from an already deduplicated
dataset.

Parameters

• data (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
where the keys are record_ids and the values are dictionaries with the keys being field names

• common_key (str) – The name of the record field that uniquely identifies a match

• training_size (int) – the rough limit of the number of training examples, defaults to
50000

Note: Every match must be identified by the sharing of a common key. This function assumes that if two
records do not share a common key then they are distinct records.

dedupe.training_data_link(data_1, data_2, common_key, training_size=50000)
Construct training data for consumption by the func:mark_pairs method from already linked datasets.

Parameters

• data_1 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from first dataset, where the keys are record_ids and the values are dictionaries with the keys
being field names

• data_2 (Mapping[Union[int, str], Mapping[str, Any]]) – Dictionary of records
from second dataset, same form as data_1

• common_key (str) – The name of the record field that uniquely identifies a match

• training_size (int) – the rough limit of the number of training examples, defaults to
50000

Note: Every match must be identified by the sharing of a common key. This function assumes that if two
records do not share a common key then they are distinct records.

dedupe.canonicalize(record_cluster)
Constructs a canonical representation of a duplicate cluster by finding canonical values for each field

Parameters record_cluster (List[Mapping[str, Any]]) – A list of records within a du-
plicate cluster, where the records are dictionaries with field names as keys and field values as
values
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3.2 Variable Definitions

3.2.1 Variable Types

A variable definition describes the records that you want to match. It is a dictionary where the keys are the fields and
the values are the field specification. For example:-

[
{'field': 'Site name', 'type': 'String'},
{'field': 'Address', 'type': 'String'},
{'field': 'Zip', 'type': 'String', 'has missing': True},
{'field': 'Phone', 'type': 'String', 'has missing': True}

]

String Types

A String type field must declare the name of the record field to compare a String type declaration. The String
type expects fields to be of class string.

String types are compared using affine gap string distance.

For example:-

{'field': 'Address', type: 'String'}

ShortString Types

A ShortString type field is just like String types except that dedupe will not try to learn a canopy blocking rule
for these fields, which can speed up the training phase considerably.

Zip codes and city names are good candidates for this type. If in doubt, always use String.

For example:-

{'field': 'Zipcode', type: 'ShortString'}

Text Types

If you want to compare fields containing long blocks of text e.g. product descriptions or article abstracts, you should
use this type. Text type fields are compared using the cosine similarity metric.

This is a measurement of the amount of words that two documents have in common. This measure can be made more
useful as the overlap of rare words counts more than the overlap of common words.

If provided a sequence of example fields (i.e. a corpus) then dedupe will learn these weights for you. For example:-

{
'field': 'Product description',
'type': 'Text',
'corpus' : [

'this product is great',
'this product is great and blue'

]
}
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If you don’t want to adjust the measure to your data, just leave ‘corpus’ out of the variable definition entirely.

{'field': 'Product description', 'type': 'Text'}

Custom Types

A Custom type field must have specify the field it wants to compare, a type declaration of Custom, and a comparator
declaration. The comparator must be a function that can take in two field values and return a number.

For example, a custom comparator:

def sameOrNotComparator(field_1, field_2) :
if field_1 and field_2 :

if field_1 == field_2 :
return 0

else:
return 1

The corresponding variable definition:

{
'field': 'Zip',
'type': 'Custom',
'comparator': sameOrNotComparator

}

LatLong

A LatLong type field must have as the name of a field and a type declaration of LatLong. LatLong fields are
compared using the Haversine Formula.

A LatLong type field must consist of tuples of floats corresponding to a latitude and a longitude.

{'field': 'Location', 'type': 'LatLong'}

Set

A Set type field is for comparing lists of elements, like keywords or client names. Set types are very similar to Text
Types. They use the same comparison function and you can also let dedupe learn which terms are common or rare by
providing a corpus. Within a record, a Set type field has to be hashable sequences like tuples or frozensets.

{
'field': 'Co-authors',
'type': 'Set',
'corpus' : [

('steve edwards'),
('steve edwards', 'steve jobs')

]
}

or

{'field': 'Co-authors', 'type': 'Set'}
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Interaction

An Interaction field multiplies the values of the multiple variables. An Interaction variable is created with
type declaration of Interaction and an interaction variables declaration.

The interaction variables field must be a sequence of variable names of other fields you have defined in
your variable definition.

Interactions are good when the effect of two predictors is not simply additive.

[
{ 'field': 'Name', 'variable name': 'name', 'type': 'String' },
{ 'field': 'Zip', 'variable name': 'zip', 'type': 'Custom',

'comparator' : sameOrNotComparator },
{'type': 'Interaction', 'interaction variables': ['name', 'zip']}

]

Exact

Exact variables measure whether two fields are exactly the same or not.

{'field': 'city', 'type': 'Exact'}

Exists

Exists variables measure whether both, one, or neither of the fields are defined. This can be useful if the presence
or absence of a field tells you something meaningful about the record.

{'field': 'first_name', 'type': 'Exists'}

Categorical

Categorical variables are useful when you are dealing with qualitatively different types of things. For example,
you may have data on businesses and you find that taxi cab businesses tend to have very similar names but law firms
don’t. Categorical variables would let you indicate whether two records are both taxi companies, both law firms,
or one of each.

Dedupe would represent these three possibilities using two dummy variables:

taxi-taxi 0 0
lawyer-lawyer 1 0
taxi-lawyer 0 1

A categorical field declaration must include a list of all the different strings that you want to treat as different categories.

So if you data looks like this:-

'Name' 'Business Type'
AAA Taxi taxi
AA1 Taxi taxi
Hindelbert Esq lawyer

You would create a definition such as:
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{
'field': 'Business Type',
'type': 'Categorical',
'categories' : ['taxi', 'lawyer']

}

Price

Price variables are useful for comparing positive, non-zero numbers like prices. The values of Price field must be
a positive float. If the value is 0 or negative, then an exception will be raised.

{'field': 'cost', 'type': 'Price'}

DateTime

DateTime variables are useful for comparing dates and timestamps. This variable can accept strings or Python
datetime objects as inputs.

The DateTime variable definition accepts a few optional arguments that can help improve behavior if you know your
field follows an unusual format:

• fuzzy - Use fuzzy parsing to automatically extract dates from strings like “It happened on June 2nd, 2018”
(default True)

• dayfirst - Ambiguous dates should be parsed as dd/mm/yy (default False)

• yearfirst- Ambiguous dates should be parsed as yy/mm/dd (default False)

Note that the DateTime variable defaults to mm/dd/yy for ambiguous dates. If both dayfirst and yearfirst
are set to True, then dayfirst will take precedence.

For example, a sample DateTime variable definition, using the defaults:

{
'field': 'time_of_sale',
'type': 'DateTime',
'fuzzy': True,
'dayfirst': False,
'yearfirst': False

}

If you’re happy with the defaults, you can simply define the field and type:

{'field': 'time_of_sale', 'type': 'DateTime'}

3.2.2 Optional Variables

Address Type

An Address variable should be used for United States addresses. It uses the usaddress package to split apart an
address string into components like address number, street name, and street type and compares component to compo-
nent.

For example:-
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{'field': 'address', 'type': 'Address'}

Install the dedupe-variable-address package for Address Type.

Name Type

A Name variable should be used for a field that contains American names, corporations and households. It uses the
probablepeople package to split apart an name string into components like give name, surname, generational suffix,
for people names, and abbreviation, company type, and legal form for corporations.

For example:-

{'field': 'name', 'type': 'Name'}

Install the dedupe-variable-name package for Name Type.

Fuzzy Category

A FuzzyCategorical variable should be used for when you for categorical data that has variations.

Occupations are an example, where the you may have ‘Attorney’, ‘Counsel’, and ‘Lawyer’. For this variable type, you
need to supply a corpus of records that contain your focal record and other field types. This corpus should either be all
the data you are trying to link or a representative sample.

For example:-

{
'field': 'occupation',
'type': 'FuzzyCategorical',
'corpus' : [

{'name' : 'Jim Doe', 'occupation' : 'Attorney'},
{'name' : 'Jim Doe', 'occupation' : 'Lawyer'}

]
}

Install the dedupe-variable-fuzzycategory package for the FuzzyCategorical Type.

3.2.3 Missing Data

If the value of field is missing, that missing value should be represented as a None object.

[
{'Name': 'AA Taxi', 'Phone': '773.555.1124'},
{'Name': 'AA Taxi', 'Phone': None},
{'Name': None, 'Phone': '773-555-1123'}

]

If you want to model this missing data for a field, you can set 'has missing' : True in the variable definition.
This creates a new, additional field representing whether the data was present or not and zeros out the missing data.

If there is missing data, but you did not declare 'has missing' : True then the missing data will simply be
zeroed out and no field will be created to account for missing data.

This approach is called ‘response augmented data’ and is described in Benjamin Marlin’s thesis “Missing Data Prob-
lems in Machine Learning”. Basically, this approach says that, even without looking at the value of the field compar-
isons, the pattern of observed and missing responses will affect the probability that a pair of records are a match.
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This approach makes a few assumptions that are usually not completely true:

• Whether a field is missing data is not associated with any other field missing data.

• That the weighting of the observed differences in field A should be the same regardless of whether field B is
missing.

If you define an an interaction with a field that you declared to have missing data, then has missing : True
will also be set for the Interaction field.

Longer example of a variable definition:

[
{'field': 'name', 'variable name' : 'name', 'type': 'String'},
{'field': 'address', 'type': 'String'},
{'field': 'city', 'variable name' : 'city', 'type': 'String'},
{'field': 'zip', 'type': 'Custom', 'comparator' : sameOrNotComparator},
{'field': 'cuisine', 'type': 'String', 'has missing': True}
{'type': 'Interaction', 'interaction variables' : ['name', 'city']}

]

3.2.4 Multiple Variables comparing same field

It is possible to define multiple variables that all compare the same variable.

For example:-

[
{'field': 'name', 'type': 'String'},
{'field': 'name', 'type': 'Text'}

]

Will create two variables that both compare the ‘name’ field but in different ways.

3.2.5 Optional Edit Distance

For String, ShortString, Address, and Name fields, you can choose to use the a conditional random field
distance measure for strings. This measure can give you more accurate results but is much slower than the default edit
distance.

{'field': 'name', 'type': 'String', 'crf': True}

3.3 How it works

3.3.1 Matching Records

If you look at the following two records, you might think it’s pretty clear that they are about the same person.

first name | last name | address | phone |
--------------------------------------------------------------
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |
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However, I bet it would be pretty hard for you to explicitly write down all the reasons why you think these records are
about the same Mr. Roberts.

Record similarity

One way that people have approached this problem is by saying that records that are more similar are more likely to be
duplicates. That’s a good first step, but then we have to precisely define what we mean for two records to be similar.

The default way that we do this in Dedupe is to use what’s called a string metric. A string metric is an way of taking
two strings and returning a number that is low if the strings are similar and high if they are dissimilar. One famous
string metric is called the Hamming distance. It counts the number of substitutions that must be made to turn one
string into another. For example, roberts and Roberts would have Hamming distance of 1 because we have to
substitute r for R in order to turn roberts into Roberts.

There are lots of different string metrics, and we actually use a metric called the Affine Gap Distance, which is a
variation on the Hamming distance.

Record by record or field by field

When we are calculating whether two records are similar we could treat each record as if it was a long string.

record_distance = string_distance('bob roberts 1600 pennsylvania ave. 555-0123',
'Robert Roberts 1600 Pensylvannia Avenue')

Alternately, we could compare field by field

record_distance = (string_distance('bob', 'Robert')
+ string_distance('roberts', 'Roberts')
+ string_distance('1600 pennsylvania ave.', '1600 Pensylvannia

→˓Avenue')
+ string_distance('555-0123', ''))

The major advantage of comparing field by field is that we don’t have to treat each field string distance equally. Maybe
we think that its really important that the last names and addresses are similar but it’s not as important that first name
and phone numbers are close. We can express that importance with numeric weights, i.e.

record_distance = (0.5 * string_distance('bob', 'Robert')
+ 2.0 * string_distance('roberts', 'Roberts')
+ 2.0 * string_distance('1600 pennsylvania ave.', '1600

→˓Pensylvannia Avenue')
+ 0.5 * string_distance('555-0123', ''))

Setting weights and making decisions

Say we set our record_distance to be this weighted sum of field distances, just as we had above. Let’s say we calculated
the record_distance and we found that it was the beautiful number 8.

That number, by itself, is not that helpful. Ultimately, we are trying to decide whether a pair of records are duplicates,
and I’m not sure what decision I should make if I see an 8. Does an 8 mean that the pair of records are really similar
or really far apart, likely or unlikely to be duplicates. We’d like to define the record distances so that we can look at
the number and know whether to decide whether it’s a duplicate.

Also, I really would rather not have to set the weights by hand every time. It can be very tricky to know which fields
are going to matter and even if I know that some fields are more important I’m not sure how to quantify it (is it 2 times
more important or 1.3 times)?
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Fortunately, we can solve both problems with a technique called regularized logistic regression. If we supply pairs of
records that we label as either being duplicates or distinct, then Dedupe will learn a set of weights such that the record
distance can easily be transformed into our best estimate of the probability that a pair of records are duplicates.

Once we have learned these good weights, we want to use them to find which records are duplicates. But turns out
that doing this the naive way will usually not work, and we’ll have to do something smarter.

Active learning

In order to learn those weights, Dedupe needs example pairs with labels. Most of the time, we will need people to
supply those labels.

But the whole point of Dedupe is to save people’s time, and that includes making good use of your labeling time so
we use an approach called Active Learning.

Basically, Dedupe keeps track of bunch unlabeled pairs and whether

1. the current learning blocking rules would cover the pairs

2. the current learned classifier would predict that the pairs are duplicates or are distinct

We maintain a set of the pairs where there is disagreement: that is pairs which classifier believes are duplicates but
which are not covered by the current blocking rules, and the pairs which the classifier believes are distinct but which
are blocked together.

Dedupe picks, at random from this disagreement set, a pair of records and asks the user to decide. Once it gets this
label, it relearns the weights and blocking rules. We then recalculate the disagreement set.

Other field distances

We have implemented a number of field distance measures. See the details about variables.

3.3.2 Making Smart Comparisons

Say we have magic function that takes in a pair of records and always returns a False if a pair of records are distinct
and True if a pair of records refer to the same person or organization.

Let’s say that this function was pretty slow. It always took one second to return.

How long would it take to duplicate a thousand records?

Within a dataset of thousand records, there are 1,000×999
2 = 499,500 unique pairs of records. If we compared all of

them using our magic function it would take six days.

But, one second is a long time, let’s say we sped it up so that we can make 10,000 comparisons per second. Now we
can get through our thousand-record-long dataset in less than a minute.

Feeling good about our super-fast comparison function, let’s take on a dataset of 100,000 records. Now there are
100,000×99,999

2 = 4,999,950,000 unique possible pairs. If we compare all of them with our super-fast comparison
function, it will take six days again.

If we want to work with moderately sized data, we have to find a way of making fewer comparisons.
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Duplicates are rare

In real world data, nearly all possible pairs of records are not duplicates.

In this four-record example below, only two pairs of records are duplicates–(1, 2) and (3, 4), while there are four
unique pairs of records that are not duplicates–(1,3), (1,4), (2,3), and (2,4). Typically, as the size of the dataset grows,
the fraction of pairs of records that are duplicates gets very small very quickly.

first name last name address phone record_id
bob roberts 1600 pennsylvania ave. 555-0123 1
Robert Roberts 1600 Pensylvannia Avenue 2
steve Jones 123 Cowabunga Lane 555-0000 3
Stephen Janes 123 Cawabunga Ln 444-555-0000 4

If we could only compare records that were true duplicates, we wouldn’t run into the explosion of comparisons. Of
course, if we already knew where the true duplicates were, we wouldn’t need to compare any individual records.
Unfortunately we don’t, but we do quite well if just compare records that are somewhat similar.

Blocking

Duplicate records almost always share something in common. If we define groups of data that share something and
only compare the records in that group, or block, then we can dramatically reduce the number of comparisons we will
make. If we define these blocks well, then we will make very few comparisons and still have confidence that will
compare records that truly are duplicates.

This task is called blocking, and we approach it in two ways: predicate blocks and canopies.

Predicate blocks

A predicate block is a bundle of records that all share a feature – a feature produced by a simple function called a
predicate.

Predicate functions take in a record field, and output a set of features for that field. These features could be “the first
3 characters of the field,” “every word in the field,” and so on. Records that share the same feature become part of a
block.

Let’s take an example. Let’s use a “first 3 character” predicate on the address field below..

first name last name address phone record_id
bob roberts 1600 pennsylvania ave. 555-0123 1
Robert Roberts 1600 Pensylvannia Avenue 2
steve Jones 123 Cowabunga Lane 555-0000 3
Stephen Janes 123 Cawabunga Ln 444-555-0000 4

That leaves us with two blocks - The ‘160’ block, which contains records 1 and 2, and the ‘123’ block, which contains
records 3 and 4.

{'160' : (1,2) # tuple of record_ids
'123' : (3,4)
}

Again, we’re applying the “first three characters” predicate function to the address field in our data, the function outputs
the following features – 160, 160, 123, 123 – and then we group together the records that have identical features into
“blocks”.
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Others simple predicates Dedupe uses include:

• whole field

• token field

• common integer

• same three char start

• same five char start

• same seven char start

• near integers

• common four gram

• common six gram

Index Blocks

Dedupe also uses another way of producing blocks from searching and index. First, we create a special data structure,
like an inverted index, that lets us quickly find records similar to target records. We populate the index with all the
unique values that appear in field.

When blocking, for each record we search the index for values similar to the record’s field. We block together records
that share at least one common search result.

Index predicates require building an index from all the unique values in a field. This can take substantial time and
memory. Index predicates are also usually slower than predicate blocking.

Combining blocking rules

If it’s good to put define blocks of records that share the same ‘city’ field, it might be even better to block records that
share both the ‘city’ field and the ‘zip code’ field. Dedupe tries these cross-field blocks. These combinations blocks
are called disjunctive blocks.

Learning good blocking rules for given data

Dedupe comes with a long set of predicates, and when these are combined Dedupe can have hundreds of possible
blocking rules to choose from. We will want to find a small set of these rules that covers every labeled duplicated pair
but minimizes the total number pairs dedupe will have to compare.

While we approach this problem by using greedy algorithms, particularly Chvatal’s Greedy Set-Cover algorithm.

3.3.3 Grouping Duplicates

Once we have calculated the probability that pairs of record are duplicates or not, we still have a kind of thorny
problem because it’s not just pairs of records that can be duplicates. Three, four, thousands of records could all refer
to the same entity (person, organization, ice cream flavor, etc.,) but we only have pairwise measures.

Let’s say we have measured the following pairwise probabilities between records A, B, and C.

A -- 0.6 -- B -- 0.6 -- C
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The probability that A and B are duplicates is 60%, the probability that B and C are duplicates is 60%, but what is the
probability that A and C are duplicates?

Let’s say that everything is going perfectly and we can say there’s a 36% probability that A and C are duplicates. We’d
probably want to say that A and C should not be considered duplicates.

Okay, then should we say that A and B are a duplicate pair and C is a distinct record or that A is the distinct record
and that B and C are duplicates?

Well. . . this is a thorny problem, and we tried solving it a few different ways. In the end, we found that hierarchical
clustering with centroid linkage gave us the best results. What this algorithm does is say that all points within some
distance of centroid are part of the same group. In this example, B would be the centroid - and A, B, C and would all
be put in the same group.

Unfortunately, a more principled answer does not exist because the estimated pairwise probabilities are not transitive.

Clustering the groups depends on us setting a threshold for group membership – the distance of the points to the
centroid. Depending on how we choose that threshold, we’ll get very different groups, and we will want to choose this
threshold wisely.

In recent years, there has been some very exciting research that solves the problem of turning pairwise distances into
clusters, by avoiding making pairwise comparisons altogether. Unfortunately, these developments are not compatible
with Dedupe’s pairwise approach. See, Michael Wick, et.al, 2012. “A Discriminative Hierarchical Model for Fast
Coreference at Large Scale” and Rebecca C. Steorts, et. al., 2013. “A Bayesian Approach to Graphical Record
Linkage and De-duplication”.

3.3.4 Choosing a Good Threshold

Dedupe can predict the probability that a pair of records are duplicates. So, how should we decide that a pair of records
really are duplicates?

To answer this question we need to know something about Precision and Recall. Why don’t you check out the
Wikipedia page and come back here.

There’s always a trade-off between precision and recall. That’s okay. As long as we know how much we care about
precision vs. recall, we can define an F-score that will let us find a threshold for deciding when records are duplicates
that is optimal for our priorities.

Typically, the way that we find that threshold is by looking at the true precision and recall of some data where we
know their true labels - where we know the real duplicates. However, we will only get a good threshold if the labeled
examples are representative of the data we are trying to classify.

So here’s the problem - the labeled examples that we make with Dedupe are not at all representative, and that’s by
design. In the active learning step, we are not trying to find the most representative data examples. We’re trying to find
the ones that will teach us the most.

The approach we take here is to take a random sample of blocked data, and then calculate the pairwise probability
that records will be duplicates within each block. From these probabilities we can calculate the expected number of
duplicates and distinct pairs, so we can calculate the expected precision and recall.
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3.3.5 Special Cases

The process we have been describing is for the most general case–when you have a dataset where an arbitrary number
of records can all refer to the same entity.

There are certain special cases where we can make more assumptions about how records can be linked, which if true,
make the problem much simpler.

One important case we call Record Linkage. Say you have two datasets and you want to find the records in each
dataset that refer to the same thing. If you can assume that each dataset, individually, is unique, then this puts a big
constraint on how records can match. If this uniqueness assumption holds, then (A) two records can only refer to the
same entity if they are from different datasets and (B) no other record can match either of those two records.

Problems with real-world data

Journalists, academics, and businesses work hard to get big masses of data to learn about what people or organizations
are doing. Unfortunately, once we get the data, we often can’t answer our questions because we can’t tell who is who.

In much real-world data, we do not have a way of absolutely deciding whether two records, say John Smith and J.
Smith are referring to the same person. If these were records of campaign contribution data, did a John Smith
give two donations or did John Smith and maybe Jane Smith give one contribution apiece?

People are pretty good at making these calls, if they have enough information. For example, I would be pretty confident
that the following two records are the about the same person.

first name | last name | address | phone |
--------------------------------------------------------------
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |

If we have to decide which records in our data are about the same person or organization, then we could just go through
by hand, compare every record, and decide which records are about the same entity.

This is very, very boring and can takes a long time. Dedupe is a software library that can make these decisions about
whether records are about the same thing about as good as a person can, but quickly.

3.4 Bibliography

• http://research.microsoft.com/apps/pubs/default.aspx?id=153478

• http://cs.anu.edu.au/~Peter.Christen/data-matching-book-2012.html

• http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

3.4.1 New School

• Steorts, Rebecca C., Rob Hall and Stephen Fienberg. “A Bayesian Approach to Record Linkage and De-
duplication” December 2013. http://arxiv.org/abs/1312.4645

Very beautiful work. Records are matched to latent individuals. O(N) running time. Unsupervised, but everything
hinges on tuning hyperparameters. This work only contemplates categorical variables.
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3.4.2 To Read

• Domingos and Domingos Multi-relational record linkage. http://homes.cs.washington.edu/~pedrod/papers/
mrdm04.pdf

• An Entity Based Model for Coreference Resolution http://people.cs.umass.edu/~mwick/MikeWeb/Publications_
files/wick09entity.pdf
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FOUR

FEATURES

• machine learning - reads in human labeled data to automatically create optimum weights and blocking rules

• runs on a laptop - makes intelligent comparisons so you don’t need a powerful server to run it

• built as a library - so it can be integrated in to your applications or import scripts

• extensible - supports adding custom data types, string comparators and blocking rules

• open source - anyone can use, modify or add to it
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FIVE

INSTALLATION

pip install dedupe
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CHAPTER

SIX

USING DEDUPE

Dedupe is a library and not a stand-alone command line tool. To demonstrate its usage, we have come up with a few
example recipes for different sized datasets for you (repo, as well as annotated source code:

• Small data deduplication

• Bigger data deduplication ~700K

• Record Linkage

• Postgres

• Patent Author Disambiguation
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SEVEN

ERRORS / BUGS

If something is not behaving intuitively, it is a bug, and should be reported. Report it here
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EIGHT

CONTRIBUTING TO DEDUPE

Check out dedupe repo for how to contribute to the library.

Check out dedupe-examples for how to contribute a useful example of using dedupe.
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NINE

CITING DEDUPE

If you use Dedupe in an academic work, please give this citation:

Gregg, Forest and Derek Eder. 2015. Dedupe. https://github.com/dedupeio/dedupe.
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INDICES AND TABLES

• genindex

• modindex

• search
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