dedupe Documentation
Release 2.0.17

Forest Gregg, Derek Eder, and contributors

Dec 19, 2023






CONTENTS

1 Important links 3
2 Tools built with dedupe 5
3 Contents 7
4 Features 27
5 Installation 29
6 Errors/Bugs 31
7 Contributing to dedupe 33
8 Citing dedupe 35
9 Indices and tables 37

Index 39







dedupe Documentation, Release 2.0.17

dedupe is a library that uses machine learning to perform de-duplication and entity resolution quickly on structured
data.

If you’re looking for the documentation for the Dedupe.io Web API, you can find that here: https://apidocs.dedupe.io/
dedupe will help you:

* remove duplicate entries from a spreadsheet of names and addresses

¢ link a list with customer information to another with order history, even without unique customer id’s

« take a database of campaign contributions and figure out which ones were made by the same person, even if
the names were entered slightly differently for each record

dedupe takes in human training data and comes up with the best rules for your dataset to quickly and automatically find
similar records, even with very large databases.

CONTENTS 1


https://apidocs.dedupe.io/

dedupe Documentation, Release 2.0.17

2 CONTENTS



CHAPTER
ONE

IMPORTANT LINKS

Documentation: https://docs.dedupe.io/

Repository: https://github.com/dedupeio/dedupe

Issues: https://github.com/dedupeio/dedupe/issues

Mailing list: https://groups.google.com/forum/#!forum/open-source-deduplication
Examples: https://github.com/dedupeio/dedupe-examples

IRC channel, #dedupe on irc.freenode.net



https://docs.dedupe.io/
https://github.com/dedupeio/dedupe
https://github.com/dedupeio/dedupe/issues
https://groups.google.com/forum/#!forum/open-source-deduplication
https://github.com/dedupeio/dedupe-examples
http://webchat.freenode.net/?channels=dedupe

dedupe Documentation, Release 2.0.17

4 Chapter 1. Important links



CHAPTER
TWO

TOOLS BUILT WITH DEDUPE

Dedupe.io A full service web service powered by dedupe for de-duplicating and find matches in your messy data.
It provides an easy-to-use interface and provides cluster review and automation, as well as advanced record linkage,
continuous matching and API integrations. See the product page and the launch blog post.

csvdedupe Command line tool for de-duplicating and linking CSV files. Read about it on Source Knight-Mozilla
OpenNews.



https://dedupe.io/
https://dedupe.io/
https://datamade.us/blog/introducing-dedupeio
https://github.com/dedupeio/csvdedupe
https://github.com/dedupeio/csvdedupe#csvlink-usage
https://source.opennews.org/en-US/articles/introducing-cvsdedupe/
https://source.opennews.org/en-US/articles/introducing-cvsdedupe/

dedupe Documentation, Release 2.0.17

6 Chapter 2. Tools built with dedupe



CHAPTER
THREE

CONTENTS

3.1 Library Documentation

3.1.1 Dedupe Objects

3.1.2 StaticDedupe Objects
3.1.3 RecordLink Objects

3.1.4 StaticRecordLink Objects
3.1.5 Gazetteer Objects

3.1.6 StaticGazetteer Objects

3.1.7 Lower Level Classes and Methods

With the methods documented above, you can work with data into the millions of records. However, if are working
with larger data you may not be able to load all your data into memory. You’ll need to interact with some of the lower
level classes and methods.

See also:

The PostgreSQL and MySQL examples use these lower level classes and methods.

Dedupe and StaticDedupe

class dedupe.Dedupe
fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.
class dedupe.StaticDedupe
fingerprinter
Instance of dedupe.blocking.Fingerprinter class

pairs(data)
Same as dedupe.Dedupe.pairs()



https://dedupeio.github.io/dedupe-examples/docs/pgsql_big_dedupe_example.html
https://dedupeio.github.io/dedupe-examples/docs/mysql_example.html

dedupe Documentation, Release 2.0.17

score (pairs)
Same as dedupe.Dedupe.score()

cluster (scores, threshold=0.5)
Same as dedupe.Dedupe.cluster()

RecordLink and StaticRecordLink

class dedupe.RecordLink
fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.
class dedupe.StaticRecordLink
fingerprinter
Instance of dedupe.blocking.Fingerprinter class
pairs(data_l, data_2)
Same as dedupe.RecordLink.pairs()
score (pairs)
Same as dedupe.RecordLink.score()

one_to_one(scores, threshold=0.0)
Same as dedupe.RecordLink.one_to_one()

many_to_one (scores, threshold=0.0)
Same as dedupe.RecordLink.many_to_one()

Gazetteer and StaticGazetteer

class dedupe.Gazetteer
fingerprinter
Instance of dedupe.blocking.Fingerprinter class if the train() has been run, else None.
class dedupe.StaticGazeteer
fingerprinter
Instance of dedupe.blocking.Fingerprinter class

blocks (data)

Same as dedupe.Gazetteer.blocks()

score (blocks)
Same as dedupe.Gazetteer.score()

many_to_n(score_blocks, threshold=0.0, n_matches=1)
Same as dedupe.Gazetteer.many_to_n()

8 Chapter 3. Contents



dedupe Documentation, Release 2.0.17

Fingerprinter Objects

class dedupe.blocking.Fingerprinter (predicates)
Takes in a record and returns all blocks that record belongs to

__call__ (records, target=False)
Generate the predicates for records. Yields tuples of (predicate, record_id).

Parameters

» records (Iterable[Record]) — A sequence of tuples of (record_id, record_dict). Can often
be created by data_dict.items().

» target (bool) — Indicates whether the data should be treated as the target data. This effects
the behavior of search predicates. If target is set to True, an search predicate will return
the value itself. If rarget is set to False the search predicate will return all possible values
within the specified search distance.

Let’s say we have a LevenshteinSearchPredicate with an associated distance of / on a
“name” field; and we have a record like { “name”: “thomas”}. If the target is set to True
then the predicate will return “thomas”. If target is set to False, then the blocker could
return “thomas”, “tomas”, and “thoms”. By using the farget argument on one of your
datasets, you will dramatically reduce the total number of comparisons without a loss of

accuracy.

> data = [(1, {'name' : 'bob'}), (2, {'name' : 'suzanne'})]
> blocked_ids = deduper. fingerprinter(data)

> print list(blocked_ids)

[("foo:1', 1), ..., ('bar:1', 100)]

index_fields: dict[str, IndexList]

A dictionary of all the fingerprinter methods that use an index of data field values. The keys are the field
names, which can be useful to know for indexing the data.

index (docs, field)
Add docs to the indices used by fingerprinters.

Some fingerprinter methods depend upon having an index of values that a field may have in the data. This
method adds those values to the index. If you don’t have any fingerprinter methods that use an index, this
method will do nothing.

Parameters

e docs (Docs) — an iterator of values from your data to index. While not required, it is
recommended that docs be a unique set of of those values. Indexing can be an expensive
operation.

o field (str) — fieldname or key associated with the values you are indexing

unindex (docs, field)

Remove docs from indices used by fingerprinters
Parameters

* docs (Docs) — an iterator of values from your data to remove. While not required, it is
recommended that docs be a unique set of of those values. Indexing can be an expensive
operation.

» field (str) — fieldname or key associated with the values you are unindexing

3.1. Library Documentation 9



dedupe Documentation, Release 2.0.17

reset_indices()

Fingeprinter indicdes can take up a lot of memory. If you are done with blocking,
indices to free up. If you need to block again, the data will need to be re-indexed.

3.1.8 Convenience Functions
3.2 Variable Definitions

3.2.1 Variable Types

the method will reset the

A variable definition describes the records that you want to match. It is a dictionary where the keys are the fields and

the values are the field specification. For example:-

[
{'field': 'Site name', 'type': 'String'},
{'field': 'Address', 'type': 'String'},
{'field': 'Zip', 'type': 'ShortString', 'has missing': True},
{'field': 'Phone', 'type': 'String', 'has missing': True}
]
String Types

A String type field must declare the name of the record field to compare a String type declaration. The String

type expects fields to be of class string.

String types are compared using string edit distance, specifically affine gap string distance.
measuring fields that might have typos in them, such as “John” vs “Jon”.

For example:-

This is a good metric for

[{'field': 'Address', type: 'String'}

ShortString Types

A ShortString type field is just like String types except that dedupe will not try to learn
for these fields, which can speed up the training phase considerably.

Zip codes and city names are good candidates for this type. If in doubt, always use String.

For example:-

any index blocking rules

[{'field': 'Zipcode', type: 'ShortString'}

10

Chapter 3. Contents



http://en.wikipedia.org/wiki/Gap_penalty#Affine

dedupe Documentation, Release 2.0.17

Text Types

If you want to compare fields containing blocks of text e.g. product descriptions or article abstracts, you should use
this type. Text type fields are compared using the cosine similarity metric.

This is a measurement of the amount of words that two documents have in common. This measure can be made more
useful as the overlap of rare words counts more than the overlap of common words.

Compare this to String and ShortString types: For strings containing occupations, “yoga teacher” might be fairly
similar to “yoga instructor” when using the Text measurement, because they both contain the relatively rare word of
“yoga”. However, if you compared these two strings using the String or ShortString measurements, they might be
considered fairly dis-similar, because the actual string edit distance between them is large.

If provided a sequence of example fields (i.e. a corpus) then dedupe will learn these weights for you. For example:-

{
'field': 'Product description',
'type': 'Text',
'corpus' : [
'this product is great',
"this product is great and blue'
]
}

If you don’t want to adjust the measure to your data, just leave ‘corpus’ out of the variable definition entirely.

[{'field': 'Product description', 'type': 'Text'}

Custom Types

A Custom type field must have specify the field it wants to compare, a type declaration of Custom, and a comparator
declaration. The comparator must be a function that can take in two field values and return a number.

For example, a custom comparator:

def same_or_not_comparator(field_1, field_2):
if field_1 and field_2 :
if field_1 == field_2
return 0
else:
return 1

The corresponding variable definition:

{
"field': 'Zip',
"type': 'Custom',
'comparator': same_or_not_comparator
}

Custom fields do not have any blocking rules associated with them. Since dedupe needs blocking rules, a data model
that only contains Custom fields will raise an error.

3.2. Variable Definitions 11


http://en.wikipedia.org/wiki/Vector_space_model

dedupe Documentation, Release 2.0.17

LatLong

A LatLong type field must have as the name of a field and a type declaration of LatLong. LatLong fields are compared
using the Haversine Formula.

A LatLong type field must consist of tuples of floats corresponding to a latitude and a longitude.

[{'field': 'Location', 'type': 'LatLong'} ]

Set

A Set type field is for comparing lists of elements, like keywords or client names. Set types are very similar to 7ext
Types. They use the same comparison function and you can also let dedupe learn which terms are common or rare by
providing a corpus. Within a record, a Set type field has to be hashable sequences like tuples or frozensets.

{

'field': 'Co-authors',

"type': 'Set',
'corpus' : [
('steve edwards'),
('steve edwards', 'steve jobs')
]
}
or

[{'field': 'Co-authors', 'type': 'Set'}

Interaction
An Interaction field multiplies the values of the multiple variables. An Interaction variable is created with type
declaration of Interaction and an interaction variables declaration.

The interaction variables field must be a sequence of variable names of other fields you have defined in your
variable definition.

Interactions are good when the effect of two predictors is not simply additive.

[
{ '"field': 'Name', 'variable name': 'name', 'type': 'String' },
{ 'field': 'Zip', 'variable name': 'zip', 'type': 'Custom',
'comparator' : same_or_not_comparator },
{'type': 'Interaction', 'interaction variables': ['name', 'zip']}
]

12 Chapter 3. Contents



http://en.wikipedia.org/wiki/Haversine_formula
http://en.wikipedia.org/wiki/Interaction_%28statistics%29

dedupe Documentation, Release 2.0.17

Exact

Exact variables measure whether two fields are exactly the same or not.

{{'field': 'city', 'type': 'Exact'} ]

Exists
Exists variables are useful if the presence or absence of a field tells you something meaningful about a pair of records.
It differentiates between three different cases:

1. The field is missing in both records.

2. The field is missing in one of the records.

3. The field is present in neither of the records.

[{'field': "first_name', 'type': 'Exists'} ]

Categorical

Categorical variables are useful when you are dealing with qualitatively different types of things. For example, you
may have data on businesses and you find that taxi cab businesses tend to have very similar names but law firms don’t.
Categorical variables would let you indicate whether two records are both taxi companies, both law firms, or one of
each. This is also a good choice for fields that are booleans, e.g. “True” or “False”.

Dedupe would represent these three possibilities using two dummy variables:

taxi-taxi 00
lawyer-lawyer 1 0
taxi-lawyer 01

A categorical field declaration must include a list of all the different strings that you want to treat as different categories.

So if you data looks like this:-

'Name' 'Business Type'
AAA Taxi taxi
AAl Taxi taxi

Hindelbert Esq lawyer

You would create a definition such as:

{
'field': 'Business Type',
"type': 'Categorical',
'categories' : ['taxi', 'lawyer']
}

3.2. Variable Definitions 13



dedupe Documentation, Release 2.0.17

Price

Price variables are useful for comparing positive, non-zero numbers like prices. The values of Price field must be a
positive float. If the value is 0 or negative, then an exception will be raised.

[{'field': 'cost', 'type': 'Price'} ]

3.2.2 Optional Variables

These variables aren’t included in the core of dedupe, but are available to install separately if you want to use them.

In addition to the several variables below, you can find more optional variables on GitHub.

DateTime
DateTime variables are useful for comparing dates and timestamps. This variable can accept strings or Python datetime
objects as inputs.

The DateTime variable definition accepts a few optional arguments that can help improve behavior if you know your
field follows an unusual format:

e fuzzy - Use fuzzy parsing to automatically extract dates from strings like “It happened on June 2nd, 2018”
(default True)

* dayfirst - Ambiguous dates should be parsed as dd/mm/yy (default False)
* yearfirst- Ambiguous dates should be parsed as yy/mm/dd (default False)

Note that the DateTime variable defaults to mm/dd/yy for ambiguous dates. If both dayfirst and yearfirst are set
to True, then dayfirst will take precedence.

For example, a sample DateTime variable definition, using the defaults:

{
'field': '"time_of_sale',
"type': 'DateTime',
'fuzzy': True,
'dayfirst': False,
'yearfirst': False

3

If you’re happy with the defaults, you can simply define the field and type:

[{'field': 'time_of_sale', 'type': 'DateTime'}

Install the dedupe-variable-datetime package for DateTime Type. For more info, see the GitHub Repository.

14 Chapter 3. Contents


https://github.com/search?q=org%3Adedupeio+dedupe-variable
https://pypi.python.org/pypi/dedupe-variable-datetime
https://github.com/dedupeio/dedupe-variable-datetime

dedupe Documentation, Release 2.0.17

Address Type

An Address variable should be used for United States addresses. It uses the usaddress package to split apart an address
string into components like address number, street name, and street type and compares component to component.

For example:-

[{'field': 'address', 'type': 'Address'} ]

Install the dedupe-variable-address package for Address Type. For more info, see the GitHub Repository.

Name Type

A Name variable should be used for a field that contains American names, corporations and households. It uses the
probablepeople package to split apart an name string into components like give name, surname, generational suffix, for
people names, and abbreviation, company type, and legal form for corporations.

For example:-

[{'field': 'name', 'type': 'Name'} J

Install the dedupe-variable-name package for Name Type. For more info, see the GitHub Repository.

Fuzzy Category

A FuzzyCategorical variable should be used for when you for categorical data that has variations.

Occupations are an example, where the you may have ‘Attorney’, ‘Counsel’, and ‘Lawyer’. For this variable type, you
need to supply a corpus of records that contain your focal record and other field types. This corpus should either be all
the data you are trying to link or a representative sample.

For example:-

{
'field': 'occupation',
'type': 'FuzzyCategorical',
'corpus' : [
{'name' : 'Jim Doe', 'occupation' : 'Attorney'},
{'name' : 'Jim Doe', 'occupation' : 'Lawyer'}
]
}

Install the dedupe-variable-fuzzycategory package for the FuzzyCategorical Type. For more info, see the GitHub
Repository.

3.2. Variable Definitions 15



https://usaddress.readthedocs.io/en/latest/
https://pypi.python.org/pypi/dedupe-variable-address
https://github.com/dedupeio/dedupe-variable-address
https://probablepeople.readthedocs.io/en/latest/
https://pypi.python.org/pypi/dedupe-variable-name
https://github.com/dedupeio/dedupe-variable-name
https://pypi.python.org/pypi/dedupe-variable-fuzzycategory
https://github.com/dedupeio/fuzzycategory
https://github.com/dedupeio/fuzzycategory

dedupe Documentation, Release 2.0.17

3.2.3 Missing Data

If the value of field is missing, that missing value should be represented as a None object. You should also use None
to represent empty strings (eg ' ').

[
{'Name': "AA Taxi', 'Phone': '773.555.1124'},
{'Name': 'AA Taxi', 'Phone': None},
{'Name': None, 'Phone': '773-555-1123'}
]
If you want to model this missing data for a field, you can set 'has missing' : True in the variable definition.

This creates a new, additional field representing whether the data was present or not and zeros out the missing data.

If there is missing data, but you did not declare 'has missing' : True then the missing data will simply be zeroed
out and no field will be created to account for missing data.

This approach is called ‘response augmented data’ and is described in Benjamin Marlin’s thesis “Missing Data Problems
in Machine Learning”. Basically, this approach says that, even without looking at the value of the field comparisons,
the pattern of observed and missing responses will affect the probability that a pair of records are a match.

This approach makes a few assumptions that are usually not completely true:
* Whether a field is missing data is not associated with any other field missing data.

» That the weighting of the observed differences in field A should be the same regardless of whether field B is
missing.

If you define an an interaction with a field that you declared to have missing data, then has missing : True will
also be set for the Interaction field.

Longer example of a variable definition:

[
{'field': 'mame', 'variable name' : 'name', 'type': 'String'},
{'field': 'address', 'type': 'String'},
{'field': 'city', 'variable name' : 'city', 'type': 'String'},
{'field': 'zip', 'type': 'Custom',6 'comparator' : same_or_not_comparator},
{'field': 'cuisine', 'type': 'String', 'has missing': True}
{'type': 'Interaction', 'interaction variables' : ['name', 'city']}
]

3.2.4 Multiple Variables comparing same field

It is possible to define multiple variables that all compare the same variable.

For example:-

[
{'field': 'mame', 'type': 'String'},
{'field': 'mame', 'type': 'Text'}

Will create two variables that both compare the ‘name’ field but in different ways.

16 Chapter 3. Contents



http://people.cs.umass.edu/~marlin/research/phd_thesis/marlin-phd-thesis.pdf
http://people.cs.umass.edu/~marlin/research/phd_thesis/marlin-phd-thesis.pdf

dedupe Documentation, Release 2.0.17

3.2.5 Optional Edit Distance

For String, ShortString, Address, and Name fields, you can choose to use the a conditional random field distance
measure for strings. This measure can give you more accurate results but is much slower than the default edit distance.

[{'field': 'name', 'type': 'String', 'crf': True} }

3.3 Examples

Dedupe is a library and not a stand-alone command line tool. To demonstrate its usage, we have come up with a few
example recipes for different sized datasets for you to try out.

You can view and download the source code for these examples in the examples repo.
Or, you can view annotated, “walkthrough” versions online:

* Small data deduplication

* Record Linkage

* Gazetter example

* MySQL example

* Postgres big dedupe example

* Patent Author Disambiguation

3.4 How it works

3.4.1 Matching Records

If you look at the following two records, you might think it’s pretty clear that they are about the same person.

first name | last name | address | phone |
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |

However, I bet it would be pretty hard for you to explicitly write down all the reasons why you think these records are
about the same Mr. Roberts.

Record similarity

One way that people have approached this problem is by saying that records that are more similar are more likely to be
duplicates. That’s a good first step, but then we have to precisely define what we mean for two records to be similar.

The default way that we do this in Dedupe is to use what’s called a string metric. A string metric is an way of taking
two strings and returning a number that is low if the strings are similar and high if they are dissimilar. One famous
string metric is called the Hamming distance. It counts the number of substitutions that must be made to turn one string
into another. For example, roberts and Roberts would have Hamming distance of 1 because we have to substitute r
for R in order to turn roberts into Roberts.

There are lots of different string metrics, and we actually use a metric called the Affine Gap Distance, which is a
variation on the Hamming distance.

3.3. Examples 17


https://github.com/dedupeio/dedupe-examples
http://dedupeio.github.io/dedupe-examples/docs/csv_example.html
https://dedupeio.github.io/dedupe-examples/docs/record_linkage_example.html
https://dedupeio.github.io/dedupe-examples/docs/gazetteer_example.html
https://dedupeio.github.io/dedupe-examples/docs/mysql_example.html
https://dedupeio.github.io/dedupe-examples/docs/pgsql_big_dedupe_example.html
https://dedupeio.github.io/dedupe-examples/docs/patent_example.html
https://en.wikipedia.org/wiki/Gap_penalty#Affine

dedupe Documentation, Release 2.0.17

Record by record or field by field

When we are calculating whether two records are similar we could treat each record as if it was a long string.

record_distance = string_distance('bob roberts 1600 pennsylvania ave. 555-0123',
'Robert Roberts 1600 Pensylvannia Avenue')

Alternately, we could compare field by field

record_distance = (string_distance('bob', 'Robert')

+ string_distance('roberts', 'Roberts')

+ string distance('1600 pennsylvania ave.', '1600 Pensylvannia Avenue
")

+ string_distance('555-0123", ''))

The major advantage of comparing field by field is that we don’t have to treat each field string distance equally. Maybe
we think that its really important that the last names and addresses are similar but it’s not as important that first name
and phone numbers are close. We can express that importance with numeric weights, i.e.

record_distance = (0O * string_distance('bob', 'Robert')

.5
+ 2.0 * string_distance('roberts', 'Roberts')
+ 2.0 * string_distance('1600 pennsylvania ave.', '1600 Pensylvannia.,
—Avenue')
+ 0.5 * string_distance('555-0123", '"))

Setting weights and making decisions

Say we set our record_distance to be this weighted sum of field distances, just as we had above. Let’s say we calculated
the record_distance and we found that it was the beautiful number 8.

That number, by itself, is not that helpful. Ultimately, we are trying to decide whether a pair of records are duplicates,
and I’m not sure what decision I should make if I see an 8. Does an 8 mean that the pair of records are really similar
or really far apart, likely or unlikely to be duplicates. We’d like to define the record distances so that we can look at the
number and know whether to decide whether it’s a duplicate.

Also, I really would rather not have to set the weights by hand every time. It can be very tricky to know which fields
are going to matter and even if I know that some fields are more important I'm not sure how to quantify it (is it 2 times
more important or 1.3 times)?

Fortunately, we can solve both problems with a technique called regularized logistic regression. If we supply pairs of
records that we label as either being duplicates or distinct, then Dedupe will learn a set of weights such that the record
distance can easily be transformed into our best estimate of the probability that a pair of records are duplicates.

Once we have learned these good weights, we want to use them to find which records are duplicates. But turns out that
doing this the naive way will usually not work, and we’ll have to do something smarter.

18 Chapter 3. Contents




dedupe Documentation, Release 2.0.17

Active learning

In order to learn those weights, Dedupe needs example pairs with labels. Most of the time, we will need people to
supply those labels.

But the whole point of Dedupe is to save people’s time, and that includes making good use of your labeling time so we
use an approach called Active Learning.

Basically, Dedupe keeps track of bunch unlabeled pairs and whether
1. the current learning blocking rules would cover the pairs
2. the current learned classifier would predict that the pairs are duplicates or are distinct

We maintain a set of the pairs where there is disagreement: that is pairs which classifier believes are duplicates but
which are not covered by the current blocking rules, and the pairs which the classifier believes are distinct but which
are blocked together.

Dedupe picks, at random from this disagreement set, a pair of records and asks the user to decide. Once it gets this
label, it relearns the weights and blocking rules. We then recalculate the disagreement set.

Other field distances

We have implemented a number of field distance measures. See the details about variables.

3.4.2 Making Smart Comparisons

Say we have magic function that takes in a pair of records and always returns a False if a pair of records are distinct
and True if a pair of records refer to the same person or organization.

Let’s say that this function was pretty slow. It always took one second to return.

How long would it take to duplicate a thousand records?

Within a dataset of thousand records, there are 1’0002&

them using our magic function it would take six days.

= 499,500 unique pairs of records. If we compared all of

But, one second is a long time, let’s say we sped it up so that we can make 10,000 comparisons per second. Now we
can get through our thousand-record-long dataset in less than a minute.

Feeling good about our super-fast comparison function, let’s take on a dataset of 100,000 records. Now there are
w = 4,999,950,000 unique possible pairs. If we compare all of them with our super-fast comparison
function, it will take six days again.

If we want to work with moderately sized data, we have to find a way of making fewer comparisons.

Duplicates are rare

In real world data, nearly all possible pairs of records are not duplicates.

In this four-record example below, only two pairs of records are duplicates—(1, 2) and (3, 4), while there are four unique
pairs of records that are not duplicates—(1,3), (1,4), (2,3), and (2,4). Typically, as the size of the dataset grows, the
fraction of pairs of records that are duplicates gets very small very quickly.

3.4. How it works 19



dedupe Documentation, Release 2.0.17

first name last name address phone record_id
bob roberts 1600 pennsylvania ave. 555-0123 1
Robert Roberts 1600 Pensylvannia Avenue 2
steve Jones 123 Cowabunga Lane 555-0000 3
Stephen Janes 123 Cawabunga Ln 444-555-0000 4

If we could only compare records that were true duplicates, we wouldn’t run into the explosion of comparisons. Of
course, if we already knew where the true duplicates were, we wouldn’t need to compare any individual records.
Unfortunately we don’t, but we do quite well if just compare records that are somewhat similar.

Blocking

Duplicate records almost always share something in common. If we define groups of data that share something and only
compare the records in that group, or block, then we can dramatically reduce the number of comparisons we will make.
If we define these blocks well, then we will make very few comparisons and still have confidence that will compare
records that truly are duplicates.

This task is called blocking, and we approach it in two ways: predicate blocks and index blocks.

Predicate blocks

A predicate block is a bundle of records that all share a feature — a feature produced by a simple function called a
predicate.

Predicate functions take in a record field, and output a set of features for that field. These features could be “the first
3 characters of the field,” “every word in the field,” and so on. Records that share the same feature become part of a
block.

Let’s take an example. Let’s use a “first 3 character” predicate on the address field below..

firstname lastname address phone record_id
bob roberts 1600 pennsylvania ave. 555-0123 1
Robert Roberts 1600 Pensylvannia Avenue 2
steve Jones 123 Cowabunga Lane 555-0000 3
Stephen Janes 123 Cawabunga Ln 444-555-0000 4

That leaves us with two blocks - The ‘160’ block, which contains records 1 and 2, and the ‘123’ block, which contains
records 3 and 4.

{'160' : (1,2) # tuple of record_ids
'123' : (3,4)
}

Again, we’re applying the “first three characters” predicate function to the address field in our data, the function outputs
the following features — 160, 160, 123, 123 — and then we group together the records that have identical features into
“blocks”.

Others simple predicates Dedupe uses include:
» whole field
* token field

20 Chapter 3. Contents



dedupe Documentation, Release 2.0.17

* common integer

¢ same three char start
¢ same five char start

¢ same seven char start
* near integers

* common four gram

* common Six gram

Index Blocks

Dedupe also uses another way of producing blocks from searching and index. First, we create a special data structure,
like an inverted index, that lets us quickly find records similar to target records. We populate the index with all the
unique values that appear in field.

When blocking, for each record we search the index for values similar to the record’s field. We block together records
that share at least one common search result.

Index predicates require building an index from all the unique values in a field. This can take substantial time and
memory. Index predicates are also usually slower than predicate blocking.

Combining blocking rules

If it’s good to put define blocks of records that share the same ‘city’ field, it might be even better to block records that
share both the ‘city’ field and the ‘zip code’ field. Dedupe tries these cross-field blocks. These combinations blocks
are called disjunctive blocks.

Learning good blocking rules for given data

Dedupe comes with a long set of predicates, and when these are combined Dedupe can have hundreds of possible
blocking rules to choose from. We will want to find a small set of these rules that covers every labeled duplicated pair
but minimizes the total number pairs dedupe will have to compare.

While we approach this problem by using greedy algorithms, particularly Chvatal’s Greedy Set-Cover algorithm.

3.4.3 Grouping Duplicates

Once we have calculated the probability that pairs of record are duplicates or not, we still have a kind of thorny problem
because it’s not just pairs of records that can be duplicates. Three, four, thousands of records could all refer to the same
entity (person, organization, ice cream flavor, etc.,) but we only have pairwise measures.

Let’s say we have measured the following pairwise probabilities between records A, B, and C.

[A 0.6 - B -—- 0.6 —- C ]

The probability that A and B are duplicates is 60%, the probability that B and C are duplicates is 60%, but what is the
probability that A and C are duplicates?

Let’s say that everything is going perfectly and we can say there’s a 36% probability that A and C are duplicates. We’d
probably want to say that A and C should not be considered duplicates.

3.4. How it works 21


http://en.wikipedia.org/wiki/Inverted_index
http://www.cs.ucr.edu/~neal/Papers/Young08SetCover.pdf

dedupe Documentation, Release 2.0.17

Okay, then should we say that A and B are a duplicate pair and C is a distinct record or that A is the distinct record and
that B and C are duplicates?

Well... this is a thorny problem, and we tried solving it a few different ways. In the end, we found that hierarchical
clustering with centroid linkage gave us the best results. What this algorithm does is say that all points within some
distance of centroid are part of the same group. In this example, B would be the centroid - and A, B, C and would all
be put in the same group.

Unfortunately, a more principled answer does not exist because the estimated pairwise probabilities are not transitive.

Clustering the groups depends on us setting a threshold for group membership — the distance of the points to the
centroid. Depending on how we choose that threshold, we’ll get very different groups, and we will want to choose this
threshold wisely.

In recent years, there has been some very exciting research that solves the problem of turning pairwise distances into
clusters, by avoiding making pairwise comparisons altogether. Unfortunately, these developments are not compatible
with Dedupe’s pairwise approach. See, Michael Wick, et.al, 2012. “A Discriminative Hierarchical Model for Fast
Coreference at Large Scale” and Rebecca C. Steorts, et. al., 2013. “A Bayesian Approach to Graphical Record Linkage
and De-duplication”.

3.4.4 Choosing a Good Threshold

Dedupe can predict the probability that a pair of records are duplicates. So, how should we decide that a pair of records
really are duplicates?

To answer this question we need to know something about Precision and Recall. Why don’t you check out the Wikipedia
page and come back here.

There’s always a trade-off between precision and recall. That’s okay. As long as we know how much we care about
precision vs. recall, we can define an F-score that will let us find a threshold for deciding when records are duplicates
that is optimal for our priorities.

Typically, the way that we find that threshold is by looking at the true precision and recall of some data where we
know their true labels - where we know the real duplicates. However, we will only get a good threshold if the labeled
examples are representative of the data we are trying to classify.

So here’s the problem - the labeled examples that we make with Dedupe are not at all representative, and that’s by
design. In the active learning step, we are not trying to find the most representative data examples. We’re trying to find
the ones that will teach us the most.

The approach we take here is to take a random sample of blocked data, and then calculate the pairwise probability
that records will be duplicates within each block. From these probabilities we can calculate the expected number of
duplicates and distinct pairs, so we can calculate the expected precision and recall.

3.4.5 Special Cases

The process we have been describing is for the most general case—when you have a dataset where an arbitrary number
of records can all refer to the same entity.

There are certain special cases where we can make more assumptions about how records can be linked, which if true,
make the problem much simpler.

One important case we call Record Linkage. Say you have two datasets and you want to find the records in each dataset
that refer to the same thing. If you can assume that each dataset, individually, is unique, then this puts a big constraint
on how records can match. If this uniqueness assumption holds, then (A) two records can only refer to the same entity
if they are from different datasets and (B) no other record can match either of those two records.

Problems with real-world data

22 Chapter 3. Contents


http://people.cs.umass.edu/~sameer/files/hierar-coref-acl12.pdf
http://people.cs.umass.edu/~sameer/files/hierar-coref-acl12.pdf
http://arxiv.org/abs/1312.4645
http://arxiv.org/abs/1312.4645
http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/F1_score

dedupe Documentation, Release 2.0.17

Journalists, academics, and businesses work hard to get big masses of data to learn about what people or organizations
are doing. Unfortunately, once we get the data, we often can’t answer our questions because we can’t tell who is who.

In much real-world data, we do not have a way of absolutely deciding whether two records, say John Smith and J.
Smith are referring to the same person. If these were records of campaign contribution data, did a John Smith give
two donations or did John Smith and maybe Jane Smith give one contribution apiece?

People are pretty good at making these calls, if they have enough information. For example, I would be pretty confident
that the following two records are the about the same person.

first name | last name | address | phone |
bob | roberts | 1600 pennsylvania ave. | 555-0123 |
Robert | Roberts | 1600 Pensylvannia Avenue | |

If we have to decide which records in our data are about the same person or organization, then we could just go through
by hand, compare every record, and decide which records are about the same entity.

This is very, very boring and can takes a long time. Dedupe is a software library that can make these decisions about
whether records are about the same thing about as good as a person can, but quickly.

3.5 Troubleshooting

So you’ve tried to apply dedupe to your dataset, but you’re having some problems. Once you understand row dedupe
works, and you’ve taken a look at some of the examples, then this troubleshoooting guide is your next step.

3.5.1 Memory Considerations

The top two likely memory bottlenecks, in order of likelihood, are:

1. Building the index predicates for blocking. If this is a problem, you can try turning off index blocking rules (and
just use predicate blocking rules) by setting index_predicates=False in dedupe.Dedupe.train().

2. During cluster(). After scoring, we have to compare all the pairwise scores and build the clusters. dedupe
runs a connected-components algorithm to determine where to begin the clustering, and this is currently done in
memory using python dicts, so it can take substantial memory. There isn’t currently a way to avoid this except
to just use less records.

3.5.2 Time Considerations

The slowest part of dedupe is probably during blocking. A big part of this is building the index predicates, so the easiest
fix for this is to set index_predicates=False in dedupe.Dedupe.train().

Blocking could also be slow if dedupe has to do too many or too complex of blocking rules. You can fix this by reducing
the number of blocking rules dedupe has to learn to cover all the true positives. Either you reduce the recall parameter
in dedupe.Dedupe. train(), or, similarly, just use less positive examples during training.

Note that you are making a choice here between speed and recall. The less blocking you do, the faster you go, but the
more likely you are to not block true positives together.

This part of dedupe is still single-threaded, and could probably benefit from parallelization or other code strategies,
although current attempts haven’t really proved promising yet.

3.5. Troubleshooting 23



dedupe Documentation, Release 2.0.17

3.5.3 Improving Accuracy
* Inspect your results and see if you can find any patterns: Does dedupe not seem to be paying enough attention
to some detail?

* Inspect the pairs given to you during dedupe . console_label (). These are pairs that dedupe is most confused
about. Are these actually confusing pairs? If so, then great, dedupe is doing about as well as you could expect.
If the pair is obviously a duplicate or obviously not a duplicate, then this means there is some signal that you
should help dedupe to find.

* Read up on the theory behind each of the variable types. Some of them are going to work better depending on
the situation, so try to understand them as well as you can.

* Add other variables. For instance try treating a field as both a String and as a Text variable. If this doesn’t cut
it, add your own custom variable that emphasizes the feature that you’re really looking for. For instance, if you
have a list of last names, you might want “Smith” to score well with “Smith-Johnson” (someone got married?).
None of the builtin variables will handle this well, so write your own comparator.

e Add Interaction variables. For instance, if both the “last name” and “street address” fields score very well,
then this is almost a guarantee that these two records refer to the same person. An Interaction variable can
emphasize this to the learner.

3.5.4 Extending Dedupe

If the built in variables don’t cut it, you can write your own variables.

Take a look at the separately maintained optional variables for examples of how to write your own custom variable
types with your custom comparators and predicates.

3.6 Bibliography

* http://research.microsoft.com/apps/pubs/default.aspx?id=153478
* http://cs.anu.edu.au/~Peter.Christen/data-matching-book-2012.html
* http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf

3.6.1 New School
* Steorts, Rebecca C., Rob Hall and Stephen Fienberg. “A Bayesian Approach to Record Linkage and De-
duplication” December 2013. http://arxiv.org/abs/1312.4645

Very beautiful work. Records are matched to latent individuals. O(N) running time. Unsupervised, but everything
hinges on tuning hyperparameters. This work only contemplates categorical variables.

24 Chapter 3. Contents


https://github.com/search?q=org%3Adedupeio+dedupe-variable
http://research.microsoft.com/apps/pubs/default.aspx?id=153478
http://cs.anu.edu.au/~Peter.Christen/data-matching-book-2012.html
http://www.umiacs.umd.edu/~getoor/Tutorials/ER_VLDB2012.pdf
http://arxiv.org/abs/1312.4645

dedupe Documentation, Release 2.0.17

3.6.2 To Read

* Domingos and Domingos Multi-relational record linkage. http://homes.cs.washington.edu/~pedrod/papers/
mrdmO4.pdf

* An Entity Based Model for Coreference Resolution http://cs.tulane.edu/~aculotta/pubs/wickO9entity.pdf

3.6. Bibliography 25


http://homes.cs.washington.edu/~pedrod/papers/mrdm04.pdf
http://homes.cs.washington.edu/~pedrod/papers/mrdm04.pdf
http://cs.tulane.edu/~aculotta/pubs/wick09entity.pdf

dedupe Documentation, Release 2.0.17

26 Chapter 3. Contents



CHAPTER
FOUR

FEATURES

machine learning - reads in human labeled data to automatically create optimum weights and blocking rules

runs on a laptop - makes intelligent comparisons so you don’t need a powerful server to run it
built as a library - so it can be integrated in to your applications or import scripts
extensible - supports adding custom data types, string comparators and blocking rules

open source - anyone can use, modify or add to it

27



dedupe Documentation, Release 2.0.17

28 Chapter 4. Features



CHAPTER
FIVE

INSTALLATION

[pip install dedupe

29



dedupe Documentation, Release 2.0.17

30 Chapter 5. Installation



CHAPTER
SIX

ERRORS / BUGS

If something is not behaving intuitively, it is a bug, and should be reported. Report it here

31


https://github.com/dedupeio/dedupe/issues

dedupe Documentation, Release 2.0.17

32 Chapter 6. Errors / Bugs



CHAPTER
SEVEN

CONTRIBUTING TO DEDUPE

Check out dedupe repo for how to contribute to the library.

Check out dedupe-examples for how to contribute a useful example of using dedupe.

33


https://github.com/dedupeio/dedupe
https://github.com/dedupeio/dedupe-examples

dedupe Documentation, Release 2.0.17

34 Chapter 7. Contributing to dedupe



CHAPTER
EIGHT

CITING DEDUPE

If you use Dedupe in an academic work, please give this citation:

Gregg, Forest and Derek Eder. 2015. Dedupe. https://github.com/dedupeio/dedupe.

35


https://github.com/dedupeio/dedupe

dedupe Documentation, Release 2.0.17

36 Chapter 8. Citing dedupe



CHAPTER
NINE

INDICES AND TABLES

* genindex

37



dedupe Documentation, Release 2.0.17

38 Chapter 9. Indices and tables



INDEX

Sym bols score() (dedupe.StaticGazeteer method), 8

__call__Q) (dedupe.blocking.Fingerprinter method), 9 ~ S€OT€ O (dedupe.StaticRecordLink method), 8

B U

blocks() (dedupe.StaticGazeteer method), 8 unindex () (dedupe.blocking.Fingerprinter method), 9

C

cluster () (dedupe.StaticDedupe method), 8

F

Fingerprinter (class in dedupe.blocking), 9
fingerprinter (dedupe.Dedupe attribute), 7
fingerprinter (dedupe.Gazetteer attribute), 8
fingerprinter (dedupe.RecordLink attribute), 8
fingerprinter (dedupe.StaticDedupe attribute), 7
fingerprinter (dedupe.StaticGazeteer attribute), 8
fingerprinter (dedupe.StaticRecordLink attribute), 8

index () (dedupe.blocking.Fingerprinter method), 9
index_fields (dedupe.blocking.Fingerprinter  at-
tribute), 9

M

many_to_n() (dedupe.StaticGazeteer method), 8
many_to_one() (dedupe.StaticRecordLink method), 8

O

one_to_one() (dedupe.StaticRecordLink method), 8

P

pairs() (dedupe.StaticDedupe method), 7
pairs() (dedupe.StaticRecordLink method), 8

R

reset_indices() (dedupe.blocking. Fingerprinter
method), 9

S

score() (dedupe.StaticDedupe method), 7

39



	Important links
	Tools built with dedupe
	Contents
	Library Documentation
	Dedupe Objects
	StaticDedupe Objects
	RecordLink Objects
	StaticRecordLink Objects
	Gazetteer Objects
	StaticGazetteer Objects
	Lower Level Classes and Methods
	Dedupe and StaticDedupe
	RecordLink and StaticRecordLink
	Gazetteer and StaticGazetteer
	Fingerprinter Objects

	Convenience Functions

	Variable Definitions
	Variable Types
	String Types
	ShortString Types
	Text Types
	Custom Types
	LatLong
	Set
	Interaction
	Exact
	Exists
	Categorical
	Price

	Optional Variables
	DateTime
	Address Type
	Name Type
	Fuzzy Category

	Missing Data
	Multiple Variables comparing same field
	Optional Edit Distance

	Examples
	How it works
	Matching Records
	Record similarity
	Record by record or field by field
	Setting weights and making decisions
	Active learning
	Other field distances


	Making Smart Comparisons
	Duplicates are rare
	Blocking
	Predicate blocks
	Index Blocks

	Combining blocking rules
	Learning good blocking rules for given data

	Grouping Duplicates
	Choosing a Good Threshold
	Special Cases

	Troubleshooting
	Memory Considerations
	Time Considerations
	Improving Accuracy
	Extending Dedupe

	Bibliography
	New School
	To Read


	Features
	Installation
	Errors / Bugs
	Contributing to dedupe
	Citing dedupe
	Indices and tables
	Index

